
ByzGame: Byzantine Generals Game
James R. Clavin, Pradeep M. Prakash, and Sisi Duan

{jclavin,pmargas1,sduan}@umbc.edu
University of Maryland, Baltimore County

ABSTRACT
Byzantine Fault Tolerance (BFT) has gained renewed interest due to
its usage as the core primitive in building consensus in blockchains.
One of the primary challenges with BFT is understanding the the-
ory behind it. Numerous BFT protocols have been proposed; un-
fortunately some of them have had correctness issues. We present
ByzGame, a web application that uniquely connects a frontend
visualization to a backend BFT implementation, and makes both
BFT consensus theory and implementation more understandable.
Our evaluation among two groups of students demonstrates that
ByzGame can greatly increase the effectiveness in teaching and
learning both fundamental and advanced topics related to BFT.

CCS CONCEPTS
• Computer systems organization → Reliability; Availabil-
ity; • Human-centered computing → Visualization design
and evaluation methods;

KEYWORDS
Byzantine generals problem, Byzantine fault tolerance, consensus

ACM Reference Format:
James R. Clavin, Pradeep M. Prakash, and Sisi Duan. 2020. ByzGame: Byzan-
tine Generals Game. In The 14th ACM International Conference on Distributed
and Event-based Systems (DEBS ’20), July 13–17, 2020, Virtual Event, QC,
Canada. ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/3401025.
3401739

1 INTRODUCTION
Byzantine fault-tolerant (BFT) is the only generic approach for
masking arbitrary failures and malicious attacks. In recent years,
with the emergence of blockchains, BFT has gained renewed inter-
est. Specifically, BFT is the core primitive for building consensus in
different types of blockchains [10, 15, 19].

Consensus protocols are known to be difficult to understand and
implement, as observed by both industry [6] and academia [16]. In
2007 the authors of [6] commented that ‘the fault-tolerance com-
puting community has not developed the tools to make it easy to
implement their algorithms.’ Seven years later, the Raft protocol [16]
was created, with themotivation of beingmore understandable than
Paxos [13], the state-of-the-art crash fault-tolerant (CFT) protocol

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
DEBS ’20, July 13–17, 2020, Virtual Event, QC, Canada
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8028-7/20/07. . . $15.00
https://doi.org/10.1145/3401025.3401739

that tolerates only benign failures. Raft’s enhanced understandabil-
ity has made it popular enough that some blockchain systems have
adopted it, or a BFT version of it, despite the fact that Raft is only a
CFT protocol, and that the BFT version of it is not correct [4, 10].

Compared with CFT, BFT is more difficult to understand and
implement due to the additional steps that are necessary to toler-
ate arbitrary failures. Despite numerous efforts to make it more
practical, a lot of existing systems (e.g., blockchains) are still us-
ing incorrect protocols [4]. Due to the complexity in reasoning
about the correctness, some prior state-of-the-art protocols had
correctness issues [1].

BFT protocols are typically represented as time-space diagrams [12]
to illustrate and ‘visualize’ the workflow. After working with stu-
dents and developers with different expertise levels, we find that a
lot of details are not captured well and cannot be easily visualized,
e.g., view change in partially synchronous BFT protocols [9]. As a
result, the correctness of such protocols cannot be easily ensured
even for researchers with deep expertise [1]. Therefore, having a
way to visualize such protocols would be beneficial. There have
been a few blockchain or consensus protocols that provide certain
forms of visualization [2, 16, 18]. Unfortunately, all of the known
ones either focus on cryptocurrency or are simple web-based visu-
alizations. Furthermore, none of them is easily ‘understandable’.

To cope with these challenges, we developed ByzGame, a visual-
izable and understandable BFT. Our motivation is not to propose
a new protocol that is more intuitive, but rather to use a novel ap-
proach to provide an interface that makes the underlying concepts
and implementation understandable. ByzGame is a web applica-
tion that connects a visualization to a backend BFT consensus
implementation. ByzGame visualizes the classic Byzantine Generals
Problem [14], and displays the generals as cities on a global map.
The cities’ purpose is to reach agreement to attack a target city. We
view ByzGame as a unique component in the BFT and distributed
systems areas which can help students and developers of various
BFT expertise learn both the theory behind BFT and how to cor-
rectly implement it. We have deployed ByzGame on Amazon EC2
and used it both in classes and in the lab. Our evaluation results
validated that ByzGame can helps students grasp BFT concepts.

2 RELATEDWORK
Numerous BFT protocols have been proposed [3, 5, 7, 8, 17, 20]. Most
BFT protocols assume partial synchrony [7, 17, 20]. Such protocols
may have zero throughput in an asynchronous environment [11].
In comparison, asynchronous protocols [3, 8] do not suffer from
this problem. In ByzGame, we build the interface based on BFT-
SMaRt [17], a protocol that assumes partial synchrony. Our system
can also be adapted to use asynchronous protocols.

Partially synchronous protocols are usually leader-based where
a designated replica is the leader, and usually includes two major

https://doi.org/10.1145/3401025.3401739
https://doi.org/10.1145/3401025.3401739
https://doi.org/10.1145/3401025.3401739

DEBS ’20, July 13–17, 2020, Virtual Event, QC, Canada James R. Clavin, Pradeep M. Prakash, and Sisi Duan

components: normal operation and view change. During normal op-
eration, the leader proposes the sequence of certain client request(s)
and replicas agree on the sequence. When the leader is suspected
to be faulty, a new one needs to be elected via view change.

To the best of our knowledge, no BFT protocol has been created
with understandability as a first class property. The comprehensibil-
ity of BFT consensus is challenging, not only for beginners, but also
for experienced researchers. As a result, some state-of-the-art BFT
protocols were later on found to have correctness issues [1]. There-
fore, a way to achieve better understanding of how the components
of a BFT protocol function from a distributed systems perspective
is needed, especially by beginners.

3 BYZGAME: THE BYZANTINE GENERALS
GAME

We have built ByzGame, a web-based application that connects a
web frontend with a BFT implementation, so that users can directly
configure the replicas, run the protocol, and visualize the message
flow. Users can do real world tests of the theory of BFT consensus,
learn the basic concepts about BFT, examine the BFT implementa-
tion, and identify issues with the protocol. As illustrated in Figure 1,
the main interface has three components: user configuration, visu-
alization, and system log. The user configuration (left panel) allows
users to configure the system and manage the replicas. The visual-
ization (top right panel) visualizes a global map where replicas are
cities. Correct cities need to agree on a target city to attack. The
system log (bottom right) presents the log from the underlying BFT
implementation and shows the workflow of the consensus.

User Configuration

Visualization

System Log

Figure 1: The main ByzGame interface.

3.1 User Configuration
ByzGame presents two system configuration inputs to users: n, the
number of replicas - or generals; and the target - or the city against
which the generals launch their attack. Upon selection of n, the
system state variables for faults allowed, or f , and quorum size, or
Q , are calculated and shown to the user, as shown in Figure 2. The
user also needs to select the target city where replicas will run the
consensus protocol to agree on whether they will attack the city.

Figure 2: ByzGame after user selects n = 4 for the number
of generals. f and quorum automatically recalculate when n
changes.

Figure 3: ByzGame mimicking replicas as cities. One city is
the target, as stated in the Byzantine Generals Problem

3.2 Visualization
A user can select up to n = 38 replicas. After n is selected, the
replicas are placed on a global map, as shown in Figure 3. The
global map will be re-generated each time a user chooses a different
n from the user configuration. After the global map is generated,
the user can then issue the following commands.
• START initializes all servers in the system. The backend code-
base automatically changes the configuration, clears all the logs,
and starts all consensus nodes.

• STOP stops all servers in the system. The backend codebase
automatically stops all consensus nodes. System configuration
and logs remain the same and will not be deleted, unless a user
restarts the servers.

• LAUNCH gives the order to "Launch Attack". Replicas start to
agree on whether they will launch an attack on the same city.

• RESET stops all the running servers and puts the system state
to the default setting where n = 4 and f = 1.
A user can also configure the replicas to run on other machines

as illustrated in Figure 4. To run ByzGame on other machines, all
the dependencies have to be installed and the nodes must have
opened the corresponding ports for communication.

After configuration, a user can select START to initialize all the
replicas via the BFT codebase in the system. The leader, if one exists,
shows on the map as a yellow dot. If the user selects a city to attack,
the LAUNCH command sends a client request to the replicas, who
return either a 1 indicating they will attack, a 0 if they will not, or
are unresponsive. If the replicas reach a consensus, the interface
animates either an attack against, or retreat from, the target city,
as in the original Byzantine generals problem [14]. An animation
of message flow is visualized in the map as shown in Figure 5.

ByzGame: Byzantine Generals Game DEBS ’20, July 13–17, 2020, Virtual Event, QC, Canada

System logs at the nodes are accessible to illustrate message flow
in the protocol. When failures occur, a user can search the logs to
identify the cause. The user can monitor each replica’s progress by
clicking on their node on the map to see their log, as in Figure 6.

Figure 4: Update-able configurations for replicas

Figure 5: ATTACK animation

Figure 6: Replica log example

3.3 General Start / Stop
If a general is stopped, all the animation from and to the corre-
sponding city is ceased and the configuration panel shows that the
the number of running generals is zero, and whether the number
of failures has exceeded f . At the system level the animated attack
also ceases if a valid quorum no longer exists (i.e., there do not exist
at least ⌈n+f +12 ⌉ running nodes in the backend) and continues if
one does. In other words, when there are more than f failures in
the system, a user will not be able to successfully launch an attack
against any city.

3.4 Client Requests
Clients are started on demand from the web application in response
to orders sent by the user. A user can instantiate a client class that
can issue one of three command types.
• LEADER learns the id of the current leader in the system. The
leader is highlighted on the map as yellow.

• ATTACK requests replicas to attack the target city. An attack
animation is visualized on the map.

• SHUTDOWN stops the selected replica(s) on the backend.

Upon receiving a LEADER request, a replica obtains the local
view number v , gets the id of the current leader, and sends the
id to the client. In response to an ATTACK request to the system,
replicas will agree on whether they will attack or retreat, similar
with the LAUNCH command.

4 IMPLEMENTATION
Excluding the BFT consensus library, the ByzGame project has
about 5,000 lines of code written in Python, JavaScript, and HTML.
We use the Python library Tornado to build the web framework,
javascript library D3 to present the global map, and LevelDB as the
database for maintaining system logs. We utilize BFT-SMaRt, an
open source java-based BFT library [17]. We extend the BFT-SMaRt
library to create a service for ByzGame that includes ByzGame
client requests and insert numerous system logs for the frontend.

5 EVALUATION
Our evaluation focuses on how ByzGame can be a useful educa-
tional tool to enhance the understandability of BFT. Our experi-
ments among students with different expertise levels show that
ByzGame can greatly help students understand BFT concepts.

5.1 Understandability
Inspired by Raft [16], we use in-class experiments to evaluate how
ByzGame can enhance the understandability of BFT.We have tested
ByzGame among two groups of students. The first group was a
graduate-level Distributed Systems course with 46 students with
little to no knowledge about consensus theory. A class lesson in-
troduced BFT, and included the Byzantine generals problem, state
machine replication, PBFT, and a brief proof. We then asked the
students to take a quiz and did not provide the correct answers.
After that we introduced ByzGame, and asked students to play the
game for half an hour. Then we asked students to take the same
quiz again. After explaining the answers, we asked the students to
take the second quiz, and provide feedback.

For the second group, we studied among five PhD students in
our research lab where each student had 1-2 years of research expe-
rience in BFT and distributed systems. We skipped the lecture about
BFT since they were already familiar with the concepts. We com-
bined the results from the two groups and obtained the percentage
of students who answered the questions correctly.

5.2 Results
The first quiz is designed to see what, if any, effect playing the
ByzGame had on students’ answers. The second quiz includes a few
new questions and our purpose is to show whether with certain in-
tervention and explanation, ByzGame can help students understand
the core concepts of BFT and consensus in general.
Quiz One. We collected 34 effective answers for student teams
who took quiz one twice, once before demonstrating ByzGame
and once after the demonstration. We compare the two groups of
results, show the difference for the results, and demonstrate the
use of ByzGame can help students better understand the concepts.

The results for multiple choice questions of quiz one are pre-
sented in Figure 7. Q1 to Q4 are fundamental questions and Q5
to Q6 are more advanced questions. For fundamental questions,

DEBS ’20, July 13–17, 2020, Virtual Event, QC, Canada James R. Clavin, Pradeep M. Prakash, and Sisi Duan

before after
0

20

40

60

80

100

58.82

82.35

47.06 47.06

82.35 82.35

64.71

70.59

17.65

35.29

29.41

52.94

Pe
rc
en
ta
ge

of
st
ud

en
ts
w
ho

an
sw

er
co
rr
ec
tly Q1 Q2

Q3 Q4
Q5 Q6

Figure 7: Percentage of student teams who answer the ques-
tions correctly before and after showing ByzGame.

student answers for two of the questions improved significantly
while two others remain unchanged. The question where student
answers improve the most is Q1: In BFT what is the threshold for
faulty nodes?

The two questions where student answers remain unchanged
are Q2 and Q3 which are questions related to view changes. The
results for Q2 is expected since ByzGame does not demonstrate any
concepts directly related to PBFT. The results for Q3 is unexpected
since ByzGame demonstrates view changes and leader election
process. We believe this unchanged result may have been caused by
students having not played with the view change functions. Adjust-
ments to the lecture and procedures during the group discussion
time may be necessary to address this.

In comparison, the percentage of students who answered Q5 and
Q6 correctly have increased significantly compared with the funda-
mental questions. Since these questions are not as straightforward
as the other basic questions, more than half of the students still did
not answer them correctly. The low percentage is caused mainly
because the question is less straightforward. Therefore, compared
with the fundamental questions, ByzGame is even more effective
in teaching the advanced topics.
Overall grade. We also grade the quiz one before and after showing
ByzGame where the maximum is 7 points. The results are sum-
marized in Table 1. As expected, the overall grade has improved
significantly for all the standards, especiallymean andmedian grade.
To conclude, we believe that ByzGame can greatly help enhance
the understandability of BFT consensus.

Min Max Mean Median
Before 2 6 3.76 4
After 2 7 4.6 5

Table 1: Grade of quiz one before and after ByzGame demo.

Quiz Two. We collected 33 useful respondents to quiz two. Quiz
two includes two types of questions: advanced questions and user
feedback. Advanced questions are similar with those in quiz one,
where we include three more questions related to quorum sizes
and the number of failures a given system can tolerate. User feed-
back includes a few questions from the user about the learning
experience of ByzGame.

Quiz two results show that for advanced questions, 87.88%, 69.7%,
and 69.7% student teams answered the questions correctly. The
average scores for the other two questions are also higher than
those similar questions in quiz one even after showing ByzGame.

User feedback. We obtain mostly positive feedback for user and
learning experience for ByzGame. 96.88% of respondents indicated
they agreed or strongly agreed that ByzGame was helpful in teach-
ing about BFT general concepts. 93.75% agreed or strongly agreed
that ByzGame helped them learn the technical concepts. 100% stated
they understood how to configure the ByzGame interface. In ad-
dition, we also noticed informally that most students performed
much better than prior years in the exams for the questions related
to BFT and consensus in general.

6 CONCLUSION
We present ByzGame, a visualizable and understandable Byzantine
fault-tolerant system that uniquely connects frontend web visu-
alization with a backend BFT implementation. ByzGame enables
users to apply BFT theory in a real system, and initial assessment
demonstrates ByzGame improves BFT understanding by individu-
als with different expertise levels. ByzGame helped students learn
and understand the concepts of BFT consensus. We have used the
ByzGame with a second cohort of students, and initial results hold.
We plan to make the game more widely available; ByzGame access
can be requested via https://www.byzgame.com.

REFERENCES
[1] Ittai Abraham, Guy Gueta, Dahlia Malkhi, Lorenzo Alvisi, Rama Kotla, and Jean-

Philippe Martin. 2017. Revisiting fast practical byzantine fault tolerance. arXiv
preprint arXiv:1712.01367 (2017).

[2] Giuseppe Di Battista, Valentino Di Donato, Maurizio Patrignani, Maurizio Piz-
zonia, and Roberto Tamassia. 2016. BitConeView: Visualization of Flows in the
Bitcoin Transaction Graph. In VizSec.

[3] Christian Cachin, Klaus Kursawe, and Victor Shoup. 2005. Random oracles in Con-
stantinople: Practical asynchronous Byzantine agreement using cryptography.
Journal of Cryptology 18, 3 (2005), 219–246.

[4] Christian Cachin and Marko Vukolić. 2017. Blockchain consensus protocols in
the wild. In DISC. 1:1–1:16.

[5] Miguel Castro and Barbara Liskov. 2002. Practical Byzantine fault tolerance and
proactive recovery. TOCS 20, 4 (2002), 398–461.

[6] Tushar D Chandra, Robert Griesemer, and Joshua Redstone. 2007. Paxos made
live: an engineering perspective. In PODC. ACM.

[7] Sisi Duan, Hein Meling, Sean Peisert, and Haibin Zhang. 2014. BChain: Byzantine
Replication with High Throughput and Embedded Reconfiguration. In OPODIS.
91–106.

[8] Sisi Duan, Michael K Reiter, and Haibin Zhang. 2018. BEAT: Asynchronous BFT
Made Practical. In CCS. ACM, 2028–2041.

[9] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. 1988. Consensus in the
presence of partial synchrony. Journal of the ACM (JACM) 35, 2 (1988), 288–323.

[10] Elli Androulaki et al. 2018. Hyperledger fabric: A distributed operating system
for permissioned blockchains. In EuroSys.

[11] Michael J Fischer, Nancy A Lynch, and Michael S Paterson. 1985. Impossibility
of distributed consensus with one faulty process. Journal of the ACM (JACM) 32,
2 (1985), 374–382.

[12] Leslie Lamport. 1978. Time, clocks, and the ordering of events in a distributed
system. Commun. ACM 11, 7 (1978), 558–565.

[13] Leslie Lamport. 1998. The part-time parliament. ACM Transactions on Computer
Systems (TOCS) 16, 2 (1998), 133–169.

[14] Leslie Lamport, Robert Shostak, andMarshall Pease. 1982. The Byzantine generals
problem. ACM TOPLAS 4, 3 (1982), 382–401.

[15] Loi Luu, Viswesh Narayanan, Chaodong Zheng, Kunal Baweja, Seth Gilbert, and
Prateek Saxena. 2016. A secure sharding protocol for open blockchains. In CCS.
ACM, 17–30.

[16] Diego Ongaro and John Ousterhout. 2014. In search of an understandable con-
sensus algorithm. In ATC. 305–319.

[17] João Sousa, Eduardo Alchieri, and Alysson Bessani. 2014. State machine replica-
tion for the masses with BFT-SMaRt. In DSN. 355–362.

[18] Tri A. Sundara, Ideva Gaputra, and Siska Aulia. 2017. Study on Blockchain
Visualization. International Journal on Informatics Visualization (2017).

[19] Gavin Wood. 2014. Ethereum: A secure decentralised generalised transaction
ledger. Ethereum Project Yellow Paper 151 (2014).

[20] Maofan Yin, Dahlia Malkhi, MK Reiterand, Guy Golan Gueta, and Ittai Abraham.
2019. HotStuff: BFT consensus with linearity and responsiveness. In PODC.

	Abstract
	1 Introduction
	2 Related Work
	3 ByzGame: The Byzantine Generals Game
	3.1 User Configuration
	3.2 Visualization
	3.3 General Start / Stop
	3.4 Client Requests

	4 Implementation
	5 Evaluation
	5.1 Understandability
	5.2 Results

	6 Conclusion
	References

