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Abstract. In this paper, we describe the design and implementation of BChain, a
Byzantine fault-tolerant state machine replication protocol, which performs com-
parably to other modern protocols in fault-free cases, but in the face of failures
can also quickly recover its steady state performance. Building on chain replica-
tion, BChain achieves high throughput and low latency under high client load. At
the core of BChain is an efficient Byzantine failure detection mechanism called
re-chaining, where faulty replicas are placed out of harm’s way at the end of
the chain, until they can be replaced. We provide a number of optimizations and
extensions and also take measures to make BChain more resilient to certain per-
formance attacks. Our experimental evaluation confirms our performance expec-
tations for both fault-free and failure scenarios. We also use BChain to implement
an NFS service, and show that its performance overhead, with and without failure,
is low, both compared to unreplicated NFS and other BFT implementations.

1 Introduction

Building online services that are both highly available and correct is challenging. Byzan-
tine fault tolerance (BFT), a technique based on state machine replication [29, 35], is
the only known general technique that can mask arbitrary failures, including crashes,
malicious attacks, and software errors. Thus, the behavior of a service employing BFT
is indistinguishable from a service running on a correct server.

There are two broad classes of BFT protocols that have evolved in the past decade:
broadcast-based [6, 28, 1, 14] and chain-based protocols [21, 38]. The main difference
between these two classes is their performance characteristics. Chain-based protocols
aim at achieving high throughput, at the expense of higher latency. However, as the
number of concurrent client requests grows, it turns out that chain-based protocols can
actually achieve lower latency than broadcast-based protocols. The downside however,
is that chain-based protocols are less resilient to failures, and typically relegate to broad-
casting when failures are present. This results in a significant performance degradation.

In this paper we propose BChain, a fully-fledged BFT protocol addressing the
performance issues observed when a BFT service experiences failures. Our evalua-
tion shows that BChain can quickly recover its steady-state performance, while Aliph-
Chain [21] and Zyzzyva [28] experience significantly reduced performance, when sub-
jected to a simple crash failure. At the same time, the steady-state performance of



Table 1. Characteristics of state-of-the-art BFT protocols tolerating f failures with batch size
b. Bold entries mark the protocol with the lowest cost. The critical path denotes the number of
one-way message delays. ∗Two message delays is only achievable with no concurrency.

PBFT Q/U HQ Zyzzyva Aliph Shuttle BChain-3 BChain-5

Total replicas 3f + 1 5f + 1 3f + 1 3f + 1 3f + 1 2f + 1 3f + 1 5f + 1

Crypto ops 2+ 8f+1
b

2+8f 4+4f 2+ 3f
b

1+ f+1
b

2+ 2f
b

1+ 3f+2
b

1+ 4f+2
b

Critical path 4 2∗ 4 3 3f + 2 2f + 2 2f + 2 3f + 2

Additional
Requirements None None None Correct

Clients
Protocol
Switch

Olympus;
Reconfig. Reconfig. None

BChain is comparable to Aliph-Chain, the state-of-the-art, chain-based BFT proto-
col. BChain also outperforms broadcast-based protocols PBFT [6] and Zyzzyva with a
throughput improvement of up to 50% and 25%, respectively. We have used BChain to
implement a BFT-based NFS service, and our evaluation shows that it is only marginally
slower (1%) than a standard NFS implementation.

BChain in a nutshell. BChain is a self-recovering, chain-based BFT protocol, where
the replicas are organized in a chain. In common case executions, clients send their
requests to the head of the chain, which orders the requests. The ordered requests are
forwarded along the chain and executed by the replicas. Once a request reaches a replica
that we call the proxy tail, a reply is sent to the client.

When a BFT service experiences failures or asynchrony, BChain employs a novel
approach that we call re-chaining. In this approach, the head reorders the chain when a
replica is suspected to be faulty, so that a fault cannot affect the critical path.

To facilitate re-chaining, BChain makes use of a novel failure detection mechanism,
where any replica can suspect its successor and only its successor. A replica does this by
sending a signed suspicion message up the chain. No proof that the suspected replica
has misbehaved is required. Upon receiving a suspicion, the head issues a new chain
ordering where the accused replica is moved out of the critical path, and the accuser is
moved to a position in which it cannot continue to accuse others. In this way, correct
replicas help BChain make progress by suspecting faulty replicas, yet malicious replicas
cannot constantly accuse correct replicas of being faulty.

Our re-chaining approach is inexpensive; a single re-chaining request corresponds
to processing a single client request. Thus, the steady-state performance of BChain has
minimal disruption. The latency reduction caused by re-chaining is dominated by the
failure detection timeout.

Our contributions in context. We consider two variants of BChain—BChain-3 and
BChain-5, both tolerating f failures. BChain-3 requires 3f + 1 replicas and a recon-
figuration mechanism coupled with our detection and re-chaining algorithms, while
BChain-5 requires 5f + 1 replicas, but can operate without the reconfiguration mech-
anism. We compare BChain-3 and BChain-5 with state-of-the-art BFT protocols in
Table 1. All protocols use MACs for authentication and request batching with batch
size b. The number of MAC operations for BChain at the bottleneck server tends to one
for gracious executions. While this is also the case for Aliph-Chain [21], Aliph requires



that clients take responsibility for switching to another slower BFT protocol in the pres-
ence of failures, to ensure safety and liveness. Thus, a single dedicated adversary might
render the system much slower. Shuttle [38] can tolerate f faulty replicas using only
2f+1 replicas. However, it relies on a trusted auxiliary server. BChain does not require
an auxiliary service, yet its critical path of 2f + 2 is identical to that of Shuttle.

Our contributions can be summarized as follows:

1. We present BChain-3 and its sub-protocols for re-chaining, reconfiguration, and
view change (§3). Re-chaining is a novel technique to ensure liveness in BChain.
Together with re-chaining, the reconfiguration protocol can replace failed replicas
with new ones, outside the critical path. The view change protocol deals with a
faulty head.

2. We present BChain-5 and how it can operate without reconfiguration (§4).
3. In §5 we evaluate the performance of BChain for both gracious and uncivil exe-

cutions under different workloads, and compare it with other BFT protocols. We
also ran experiments with a BFT-NFS application and assessed its performance
compared to the other relevant BFT protocols.

2 System Model

We assume a Byzantine fault tolerant system, where replicas communicate over pair-
wise channels and may behave arbitrarily. Our system can mask up to f faulty replicas,
using n replicas. We write t, where t ≤ f , to denote the number of faulty replicas that
the system currently has. A computationally bounded adversary can coordinate faulty
replicas to compromise safety only if more than f replicas are compromised.

Safety of our system holds in any asynchronous environment, where messages may
be delayed, dropped, or delivered out of order. Liveness is ensured assuming partial
synchrony [18]: synchrony holds only after some unknown global stabilization time,
but the bounds on communication and processing delays are themselves unknown.

We use non-keyed message digests. The digest of a message m is denoted D(m).
We also use digital signatures. The signature of a messagem signed by replica pi is de-
noted 〈m〉pi . We say that a signature is valid on message m, if it passes the verification
w.r.t. the public-key of the signer and the message. A vector of signatures of message
m signed by a set of replicas U = {pi, . . . , pj} is denoted 〈m〉U .

We classify the replica failures according to their behaviors. Weak semantics levy
fewer restrictions on the possible behaviors than strong semantics. Apart from the weak-
est failure semantics (i.e., Byzantine failure), we are also interested in various other
stronger failure semantics. Crash failures, occur when the replicas might halt perma-
nently and no longer produce any output. By timing failures, we mean any replica fail-
ures that produce correct results but deliver them outside of a specified time window.

3 BChain-3
We now describe the main protocols and principles of BChain. Our description here
uses digital signatures; later we show how they can be replaced with MACs, along with
other optimizations. BChain-3 has five sub-protocols: (1) chaining, (2) re-chaining,



(3) view change, (4) checkpoint, and (5) reconfiguration. The chaining protocol orders
clients requests, while re-chaining reorganizes the chain in response to failure suspi-
cions. Faulty replicas are moved to the end of the chain. The view change protocol
selects a new head when the current head is faulty, or the system is slow. Our check-
point protocol is similar to that of PBFT [6]. It is used to bound the growth of message
logs and reduce the cost of view changes. We do not describe it in this paper. The re-
configuration protocol is responsible for reconfiguring faulty replicas.

To tolerate f failures, BChain-3 needs n replicas such that f ≤ bn−13 c. In the
following, we assume n = 3f + 1 for simplicity.

3.1 Conventions and Notations

In BChain, the replicas are organized in a metaphorical chain, as shown in Figure 1.
Each replica is uniquely identified from a set Π = {p1, p2, · · · , pn}. Initially, we as-
sume that replica IDs are numbered in ascending order. The first replica is called the
head, denoted ph, the last replica is called the tail, and the (2f + 1)th replica is called
the proxy tail, denoted pp. We divide the replicas into two subsets. Given a specific
chain order, A contains the first 2f + 1 replicas, initially p1 to p2f+1. B contains the
last f replicas in the chain, initially p2f+2 to p3f+1. For convenience, we also define
A6p = {A \ pp}, excluding the proxy tail, and A6h = {A \ ph}, excluding the head.

1 2 2f+1 2f+2

head proxy tail tail
2f 3f+1

: 2f+1 replicas : f replicas

Fig. 1. BChain-3. Replicas are organized in a chain.

The chain order is main-
tained by every replica
and can be changed
the head and is com-
municated to replicas
through message trans-
missions. (This is in
contrast to Aliph-Chain, where the chain order is fixed and known to all replicas and
clients beforehand.) For any replica except the head, pi ∈ A6h, we define its predecessor
↼

p i, initially pi−1, as its preceding replica in the current chain order. For any replica ex-
cept the proxy tail, pi ∈ A6p, we define its successor

⇀

p i, initially pi+1, as its subsequent
replica in the current chain order.

For each pi ∈ A, we define its predecessor set P(pi) and successor set S(pi),
whose elements depend on their individual positions in the chain. If a replica pi 6= ph
is one of the first f + 1 replicas, its predecessor set P(pi) consists of all the preceding
replicas in the chain. For every other replica inA, the predecessor set P(pi) consists of
the preceding f +1 replicas in the chain. If pi is one of the last f +1 replicas in A, the
successor set S(pi) consists of all the subsequent replicas in A. For every other replica
in A, the successor set S(pi) consists of the subsequent f + 1 replicas. Note that the
cardinality of any replica’s predecessor set or successor set is at most f + 1.

3.2 Protocol Overview

In a gracious execution, as shown in Figure 2, the first 2f + 1 replicas (set A) reach an
agreement while the last f replicas (set B) correspondingly update their states based on



the agreed-upon requests from set A. BChain transmits two types of messages along
the chain: 〈CHAIN〉 messages transmitted from the head to the proxy tail, and 〈ACK〉
messages transmitted in reverse from the proxy tail to the head. A request is executed
after a replica accepts the 〈CHAIN〉 message; a request commits at a replica if it accepts
the 〈ACK〉 message.

Upon receiving a client request, the head sends a 〈CHAIN〉message representing the
request to its successor. As soon as the proxy tail accepts the 〈CHAIN〉message, it sends
a reply to the client and generates an 〈ACK〉 message, which is sent backwards along
the chain until it reaches the head. Once a replica in A accepts the 〈ACK〉 message, it
completes the request and forwards its 〈CHAIN〉 message to replicas in B to ensure that
the message is committed at all the replicas.

To handle failures and ensure liveness, BChain incorporates failure detection and re-
chaining protocol that works as follows: Every replica inA6p starts a timer after sending
a 〈CHAIN〉 message. Unless an 〈ACK〉 is received before the timer expires, it sends a
〈SUSPECT〉message to the head and also along the chain towards the head. Upon seeing
〈SUSPECT〉 messages, the head starts the re-chaining, by moving faulty replicas to set B
where, if needed, replicas may be replaced in the reconfiguration protocol. In this way,
BChain remains robust until new failures occur.

client
(head) p   

p
(proxy tail) p   

(tail) p   

0

1

2

3

!REPLY"

!ACK"

!CHAIN"

!CHAIN"

!CHAIN"

!REQUEST"

!ACK"

!CHAIN"
!CHAIN"

Fig. 2. BChain-3 common case communication pattern. (This and subsequent pictures are best
viewed in color.) All the signatures can be replaced with MACs. All the 〈CHAIN〉 and 〈ACK〉
messages can be batched. The 〈CHAIN〉 messages with dotted, blue lines are the forwarded mes-
sages that are stored in logs. No conventional broadcast is used at any point in our protocol. For
a given batch size b, the number of MAC operations at the bottleneck server (i.e., the proxy tail)
is 1 + 3f+2

b
.

3.3 Chaining

We now describe the sequence of steps of the chaining protocol, used to order requests,
when there are no failures.

Step 0: Client sends a request to the head. A client c requests the execution of state
machine operation o by sending a request m =〈REQUEST, o, T, c〉c to the replica that it
believes to be the head, where T is the timestamp.

Step 1: Assign sequence number and send chain message. When the head ph receives
a valid 〈REQUEST, o, T, c〉c message, it assigns a sequence number and sends message
〈CHAIN, v, ch,N,m, c,H, R, Λ〉ph

to its successor, where v is the view number, ch is
the number of re-chainings that took place during view v,H is the hash of its execution
history, R is the hash of the reply r to the client containing the execution result, and Λ
is the current chain order. Both ofH and R are empty in this step.

Step 2: Execute request and send chain message. A replica pj receives from its pre-
decessor a valid 〈CHAIN, v, ch,N,m, c,H, R, Λ〉P(pj) message, which contains valid



signatures by replicas in P(pj). The replica pj updates H and R fields if necessary,
appends its signature to the 〈CHAIN〉 message, and sends to its successor. Note that the
H and R fields are empty if pj is among the first f replicas, and bothH and R must be
verified before proceeding.

Each time a replica pj ∈ A6p sends a 〈CHAIN〉 message, it sets a timer, expecting an
〈ACK〉 message, or a 〈SUSPECT〉 message signaling some replica failures.

Step 3: Proxy tail sends reply to the client and commits the request. If the proxy tail
pj accepts a 〈CHAIN〉 message, it computes its own signature and sends the client the
reply r, along with the 〈CHAIN〉 message it accepts. It also sends to its predecessor
an 〈ACK, v, ch,N,D(m), c〉pj

message. In addition, it forwards to all replicas in B the
corresponding 〈CHAIN, v, ch,N,m, c,H, R, Λ〉pj

message . The request commits at the
proxy tail.

Step 4: Client completes the request or retransmits. The client completes the request
if it receives 〈REPLY〉 message from the proxy tail with signatures by the last f + 1
replicas in the chain. Otherwise, it retransmits the request to all replicas.

Step 5: Other replicas in A commit the request. A valid 〈ACK, v, ch,N,D(m), c〉S(pj)

message is sent to replica pj by its successor, which contains valid signatures by replicas
in S(pj). The replica appends its own signature and sends to its predecessor.

Step 6: Replicas in B execute and commit request. The replicas in B collects f + 1
matching 〈CHAIN〉messages, and executes the operation, completing the current round.
Thus, the request commits at each correct replica in B.

3.4 Re-chaining

Algorithm 1 Failure detector at replica pi
1: upon 〈CHAIN〉 sent by pi
2: starttimer(∆1,pi)

3: upon 〈Timeout,∆1,pi〉 {Accuser pi}
4: send 〈SUSPECT,

⇀

p i,m, ch, v〉pi to
↼

p i and ph

5: upon 〈ACK〉 from
⇀

p i
6: canceltimer(∆1,pi

)

7: upon 〈SUSPECT, py,m, ch, v〉 from
⇀

p i

8: forward 〈SUSPECT, py,m, ch, v〉 to
↼

p i
9: canceltimer(∆1,pi

)

To facilitate failure detec-
tion and ensure that BChain
remains live, we introduce a
protocol we call re-chaining.
With re-chaining, we can make
progress with a bounded num-
ber of failures, despite incorrect
suspicions, in a partially syn-
chronous environment. The al-
gorithm ensures that eventually
all the faulty replicas be iden-
tified and appropriately dealt
with. The strategy of the re-
chaining algorithm is to move
replicas that are suspected to set B, where if deemed necessary, they are rejuvenated.

BChain failure detector. The objective of the BChain failure detector is to identify
faulty replicas, and issue a new chain configuration and to ensure that progress can be
made. It is implemented as a timer on 〈CHAIN〉 messages, as shown in Algorithm 1. On
sending a 〈CHAIN〉 message m, replica pi starts a timer, ∆1,pi

. If the replica receives
an 〈ACK〉 for the message before the timer expires, it cancels the timer and starts a new



one for the next request in the queue, if any. Otherwise, it sends both the head and its
predecessor a 〈SUSPECT,

⇀

p i,m, ch, v〉 to signal the failure of its successor. Moreover, if
pi receives a 〈SUSPECT〉 message from its successor, the message is forwarded to pi’s
predecessor, along the chain until it reaches the head. To prevent that a faulty replica
fails to forward the 〈SUSPECT〉 message, it is also sent directly to the head. Passing it
along the chain allows us to cancel timers and reduce the number of suspect messages.

Let pi be the accuser; then the accused can only be its successor,
⇀

p i. This is ensured
by having the accuser sign the 〈SUSPECT〉 message, just as an 〈ACK〉 message.

Algorithm 2 BChain-3 Re-chaining-I
1: upon 〈SUSPECT, py,m, ch, v〉 from px {Head ph}
2: if px 6= ph then {px is not the head}
3: pz is put to the 2nd position {pz = B[1]}
4: px is put to the (2f + 1)th position
5: py is put to the end

On receiving a 〈SUSPECT〉, the
head starts re-chaining via a new
〈CHAIN〉message. If the head re-
ceives multiple 〈SUSPECT〉 mes-
sages, only the one closest to the
proxy tail is handled. Handling
a 〈SUSPECT〉 message is done by
increasing ch, selecting a new
chain order Λ, and sending a 〈CHAIN〉 message to order the same request again.

Re-chaining algorithms. We provide two re-chaining algorithms for BChain-3 as shown
in Algorithm 2 and 3. To explain these algorithms, assume that the head, ph, has re-
ceived a 〈SUSPECT〉 message from a replica px suspecting is successor py . Let pz be
the first replica in set B. Both algorithms show how the head selects a new chain order.
Both are efficient in the sense that the number of re-chainings needed is proportional
to the number of existing failures t instead of the maximum number f . We levy no
assumptions on how failures are distributed in the chain.

〈SUSPECT〉

1 2 4 2f+1 3f+1

head proxy tail tail

timeout!

2f+23

(a) p3 generates a 〈SUSPECT〉 message to accuse p4

1 2f+2 3 3f+1

head proxy tail reconfiguration

42

(b) p4 is moved to the tail

Fig. 3. Example (1). A faulty replica is denoted by a double
circle. After the timer expires, replica p3 issues a 〈SUSPECT〉
message to accuse p4 (which is faulty). The head moves p3 to
the proxy tail position and the faulty replica p4 to the end of the
chain.

Re-chaining-I—crash fail-
ures handled first. Algorithm 2
is reasonably efficient; in
the worst case, t faulty
replicas can be removed
with at most 3t re-chainings.
More specifically, if the
head is correct and 3t ≤
f , the faulty replicas are
moved to the end of chain
after at most 3t re-chainings;
if 3t > f , at most 3t re-
chainings are necessary and
at most 3t− f replicas are
replaced in the reconfigura-
tion protocol (§3.6), assum-
ing that any individual replica can be reconfigured within f re-chainings. Algorithm 2 is
even more efficient when handling timing and omission failures, with one such replica
being removed using only one re-chaining. Despite the succinct algorithm, the proof of
the correctness for the general case is complicated, as shown in Appendix B. To help
grasp the underlying idea, consider the following simple examples.



B Example (1): In Figure 3, replica p4 has a timing failure. This causes p3 to send a
〈SUSPECT〉 message up the chain to accuse p4. According to our re-chaining algorithm,
p3 is moved to the (2f + 1)th position and becomes the proxy tail, and p4 is moved
to the end of the chain and becomes the tail. Our fundamental design principle is that
timing failures should be given top priority.

〈SUSPECT〉

1 2 3 2f+1 3f+1

head proxy tail tail

timeout!

2f+24

(a) p3 generates a 〈SUSPECT〉 message to maliciously accuse p4

〈SUSPECT〉

1 32f+1 3f+1

head proxy tail reconfiguration

timeout!

2f+2 4

(b) p2f+1 generates a 〈SUSPECT〉 message to accuse p3

1 2f+3 42f+1

head proxy tail reconfiguration

32f

(c) p3 is moved to the tail and reconfigured

Fig. 4. Example (2). Replica p3 maliciously sends a
〈SUSPECT〉 message to accuse p4. The head moves p3 to the
proxy tail and p4 to the end of the chain. If p3 does not behave,
it will be accused by its predecessor p2f+1 such that in another
round of re-chaining p3 is moved to the end.

B Example (2): In Figure 4,
p3 is the only faulty replica.
We consider the circum-
stance where p3 sends the
head a 〈SUSPECT〉 message
to frame its successor p4
even if p4 follows the pro-
tocol. According to our re-
chaining algorithm, replica
p4 will be moved to the tail,
while p3 becomes the new
proxy tail. However, from
then on, p3 can no longer
accuse any replicas. It either
follows the specification of
the protocol, or chooses not
to participate in the agree-
ment, in which case p3 will
be moved to the tail. The
example illustrates another
important designing ratio-
nale that an adversarial replica cannot constantly accuse correct replicas.

Algorithm 3 BChain-3 Re-chaining-II
1: upon 〈SUSPECT, py,m, ch, v〉 from px
2: if px 6= ph then {px is not the head}
3: px is put to the (3f)th position
4: py is put to the end

Re-chaining-II—improved efficiency. Algorithm 3
can improve efficiency for the worst
case. The underlying idea is simple: ev-
ery time the head receives a 〈SUSPECT〉
message, both the accuser and the ac-
cused are moved to the end of the chain.
Algorithm 3 does not prioritize crash
failures, and relies on a stronger recon-
figuration assumption. If the head is correct and 2t ≤ f , the faulty replicas are moved
to the end of chain after at most 2t re-chainings; if 2t > f , at most 2t re-chainings
are necessary and at most 2t − f replica reconfigurations (§3.6) are needed, assuming
that any individual replica can be reconfigured within bf/2c re-chainings. When an ac-
cused replica is moved to the end of chain, the reconfiguration process is initialized,
either offline or online. The replicas moved to the end of the chain are all “tainted” and
reconfigured, as we discuss in §3.6 and §A.

Timer setup and preventing timer-based performance attacks. Existing BFT proto-
cols typically only keep timers for view changes, while BChain also requires timers for



〈ACK〉 and 〈CHAIN〉 messages. To achieve accurate failure detection, we need different
values for each timer in each replica in the chain.

The timeout for each replica pi ∈ A is defined as ∆1,i = F(∆1, li), where F is a
fixed and efficiently computable function, ∆1 is the base timeout, and li is pi’s location
in the chain order. Note that for ph, we have that lh = 1 and thus F(∆1, 1) = ∆1.
Correspondingly, for pp, we have that lp = 2f + 1 and F(∆1, 2f + 1) = 0. It is
reasonable to adopt a linear function with respect to the position of each replica as the
timer function. i.e., F(∆1, li) = 2f+1−li

2f ∆1. As an example, in the case of n = 4

and f = 1, we set that ∆1,p1
= F(∆1, 1) = ∆1, ∆1,p2

= F(∆1, 2) = ∆1/2, and
∆1,p3

= F(∆1, 3) = 0.
To detect and deter misbehaving replicas that always delay requests to the upper

bound timeout value to increase system latency, we also verify the processing delays
for the average case and allow replicas to suspect other replicas who frequently do so.
Concretely, each replica pi maintains an additional performance threshold timer ∆′1,pi

such that ∆′1,pi
< ∆1,pi

, which is used to detect slow or faulty replicas as mentioned
above. That is, we ask the replica to further suspect its successor if their average delay
exceeds ∆′1,pi

. This will allow us to thwart dedicated performance attacks on messages
delays while preventing temporarily slow replicas from being accused prematurely. We
will show in §5.1 how to efficiently set up and maintain the timers in actual experiments.

3.5 View Change

The view change protocol has two functions: (1) to select a new head when the current
head is deemed faulty, and (2) to adjust the timers to ensure eventual progress, despite
deficient initial timer configuration.

A correct replica pi votes for view change if either (1) it suspects the head to be
faulty, or (2) it receives f + 1 〈VIEWCHANGE〉 messages. The replica votes for view
change and moves to a new view by sending all replicas a 〈VIEWCHANGE〉 message
that includes the new view number, the current chain order, a set of valid checkpoint
messages, and a set of requests that commit locally with proof of execution. For each
request that commits locally, if pi ∈ A, then a proof of execution for a request contains
a 〈CHAIN〉 message with signatures from P(pi) and an 〈ACK〉 message with signatures
from S(pi). Otherwise, a proof of execution contains f + 1 〈CHAIN〉 messages. Upon
sending a 〈VIEWCHANGE〉message, pi stops receiving messages except 〈CHECKPOINT〉,
〈NEWVIEW〉, or other 〈VIEWCHANGE〉 messages.

When the new head collects 2f + 1 〈VIEWCHANGE〉 messages, it sends all replicas
a 〈NEWVIEW〉message which includes the new chain order in which the head of the old
view has been moved to the end of the chain, a set of valid 〈VIEWCHANGE〉 messages,
and a set of 〈CHAIN〉 messages.

The other function of view change is to adjust the timers. In addition to the timer∆1

maintained for re-chaining, BChain has two timers for view changes, ∆2 and ∆3. ∆2

is a timer maintained for the current view v when a replica is waiting for a request to be
committed, while ∆3 is a timer for 〈NEWVIEW〉, when a replica votes for a view change
and waits for the 〈NEWVIEW〉. Algorithm 4 describes how to initialize, maintain, and
adjust these timers.



Algorithm 4 View Change Handling and Timers at pi

1: ∆2 ← init∆2 ; ∆3 ← init∆3

2: voted← false
3: upon 〈Timeout,∆2〉
4: send 〈VIEWCHANGE〉
5: voted← true
6: upon f + 1 〈VIEWCHANGE〉 ∧ ¬voted
7: send 〈VIEWCHANGE〉
8: voted← true
9: canceltimer(∆2)

10: upon 2f + 1 〈VIEWCHANGE〉
11: starttimer(∆3)
12: upon 〈Timeout,∆3〉
13: ∆3 ← g3(∆3)
14: send new 〈VIEWCHANGE〉
15: upon 〈NEWVIEW〉
16: canceltimer(∆3)
17: ∆1 ← g1(∆1)
18: ∆2 ← g2(∆2)

The view change timer ∆2 at a replica is set up for the first request in the queue. A
replica sends a 〈VIEWCHANGE〉 message to all replicas and votes for view change if ∆2

expires or it receives f + 1 〈VIEWCHANGE〉 messages. In either case, when a replica
votes for view change, it cancels its timer ∆2.

After a replica collects 2f + 1 〈VIEWCHANGE〉 messages (including its own), it
starts a timer ∆3 and waits for the 〈NEWVIEW〉 message. If the replica does not receive
〈NEWVIEW〉message before∆3 expires, it starts a new 〈VIEWCHANGE〉 and updates∆3

with a new value g3(∆3).
When a replica receives the 〈NEWVIEW〉 message, it sets ∆1 and ∆2 using g1(∆1)

and g2(∆2), respectively. In practice, the functions g1(·), g2(·), and g3(·) could simply
double the current timeouts.

To avoid the circumstance that the timeouts for ∆1 and ∆2 increase without bound,
we introduce upper bounds for both of them. Once either timer exceeds the prescribed
bound, the system starts reconfiguration.

3.6 Reconfiguration

Reconfiguration [30] is a general technique, often abstracted as stopping the current
state machine and restarting it with a new set of replicas, usually reusing non-faulty
replicas in the new configuration. In BChain we use reconfiguration in concert with
re-chaining to replace faulty replicas with new ones. This is possible because reconfig-
uration operates out-of-band, in the B replica set, and imposes only negligible overhead
on client request processing being done by replicas in A. See §A for more details.

3.7 Optimizations and Extensions

We have developed several optimizations and extensions to BChain. Specifically, we de-
veloped means for replacing most signatures with MACs, and also means for combining
MAC-based and signature-based BChain approaches. We also developed two variants
of BChain, including a pure MAC-based protocol without reconfiguration when n = 4
and f = 1. However, due to lack of space, please refer to §D for details.



4 BChain without Reconfiguration

We now discuss BChain-5, which uses n = 5f +1 replicas to tolerate f Byzantine fail-
ures, just as Q/U [1] and Zyzzyva5 [28]. With 5f+1 replicas at our disposal, we design
an efficient re-chaining algorithm, which allows the faulty replicas to be identified eas-
ily without relying on reconfiguration. Meanwhile, a Byzantine quorum of replicas can
reach agreement. BChain-5 relies on the concept of Byzantine quorum protocols [32].
Set A is a Byzantine quorum which consists of dn+f+1

2 e = 3f + 1 replicas, while set
B consists of the remaining of 2f replicas.

BChain-5 has four sub-protocols: chaining, re-chaining, view change, and check-
point. In contrast, BChain-3 additionally requires a reconfiguration protocol. The pro-
tocols for BChain-3 and BChain-5 are identical with respect to message flow. The main
difference lies in the size of theA set, which now consists of 3f +1 replicas. BChain-5
also uses Algorithm 3, modifying only Line 3 to put px to the (5f)th position.

Assuming the timers are accurately configured and that the head is non-faulty, it
takes at most f re-chainings to move f failures to the tail setB. The proofs for safety and
liveness of BChain-5 are easier than those of BChain-3 due to a different re-chaining
algorithm and the absence of the reconfiguration procedure.
To reconfigure or not to reconfigure? The primary benefit of BChain-5 over BChain-3
is that it eliminates the need for reconfiguration to achieve liveness. This is beneficial,
since reconfiguration needs additional resources, such as machines to host reconfigured
replicas. However, since BChain-5 can identify and move faulty replicas to the tail setB,
we can still leverage the reconfiguration procedure on the replicas in B, to provide long-
term system safety and liveness. This does not contradict the claim that BChain-5 does
not need reconfiguration; rather, it just makes the system more robust. Furthermore,
BChain-5 provides flexibility with respect to when the system should be reconfigured.
Specifically, reconfiguration can happen any time after the system achieves a stable state
or simply has run for a “long enough” period of time.

5 Evaluation

This section studies the performance of BChain-3 and BChain-5 and compares them
with three well-known BFT protocols—PBFT [6], Zyzzyva [28], and Aliph [21]. Aliph
uses Chain for gracious execution under high concurrency. Aliph-Chain enjoys the
highest throughput when there are no failures, however, as we will see, it cannot sustain
its performance during failure scenarios by itself, where BChain is superior.

We study the performance using two types of benchmarks: the micro-benchmarks
by Castro and Liskov [6] and the Bonnie++ benchmark [12]. We use micro-benchmarks
to assess throughput, latency, scalability, and performance during failures of all the
five protocols. In the x/y micro-benchmarks, clients send x kB requests and receive
y kB replies. Clients invoke requests in a closed-loop, where a client does not start a
new request before receiving a reply for a previous one. All the protocols implement
batching of concurrent requests to reduce cryptographic and communication overheads.

All experiments were carried out on DeterLab [5], utilizing a cluster of up to 65
identical machines equipped with a 2.13GHz Xeon processor and 4GB of RAM. They
are connected through a 100Mbps switched LAN.



We have assessed the performance of all protocols under gracious execution, and
find that both BChain-3 and BChain-5 achieve higher throughput and lower latency
than PBFT and Zyzzyva especially when the number of concurrent client requests is
large, while BChain-3 has performance similar to the Aliph-Chain protocol. Our exper-
iment bolsters the point of view of Guerraoui et al. [21] that (authenticated) chaining
replication can increase throughput and reduce latency under high concurrency.

In addition to micro-benchmarks, we have also evaluated a BFT-NFS service im-
plemented using PBFT [6], Zyzzyva [28], and BChain-3. We show that performance
overhead of BChain-3, with and without failure, is low, both compared to unreplicated
NFS and other BFT implementations.

In this paper, our focus is on BChain’s performance under failures, and thus we omit
the detailed evaluation for gracious execution (§E.1) and the NFS use case (§E.2.)

In case of failures, both BChain-3 and BChain-5 outperform all the other protocols
by a wide margin, due to BChain’s unique re-chaining protocol. Through the timeout
adjustment scheme, we show that a faulty replica cannot reduce the performance of the
system by manipulating the timeouts.
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Fig. 5. Performance under failure.

5.1 Performance under Failures

We compare the performance of BChain with the other BFT protocols under two sce-
narios: a simple crash failure scenario and a performance attack scenario. As the results
in Figure 5(a) show, BChain has superior reaction to failures. When BChain detects a
failure, it will start re-chaining. At the moment when re-chaining starts, the through-
put of BChain temporarily drops to zero. After the chain has been re-ordered, BChain
quickly recovers its steady state throughput. The dominant factor deciding the duration
of this throughput drop (i.e. increased latency) is the failure detection timeout, not the
re-chaining. We also show that BChain can resist a timer-based performance attack, i.e.,
a faulty replica cannot intentionally manipulate timeouts to slow down the system.



Crash failure. We compare the throughput during crash failure for BChain-3, BChain-
5, PBFT, Zyzzyva, and Aliph. The results are shown in Figure 5(a). We use f = 1,
message batching, and 40 clients. To avoid clutter in the plot, we used different failure
inject times for the protocols: BChain-3, BChain-5, and PBFT all experience a failure
at 1s, while Zyzzyva and Aliph experience a failure at 1.5s and 2s, respectively.

We note that Aliph [21, 40] generally switches between three protocols: Quorum,
Chain, and a backup, e.g., PBFT. For our experiments, we adopt the same setting as
Aliph paper [21], i.e., it uses a combination of Chain and PBFT as backup and a con-
figuration parameter k, denoting the number of requests to be executed when running
with the backup protocol. We use both k = 1 and k = 2i.

Even though Aliph exhibits slightly higher throughput than BChain-3 prior to the
failure, its throughput takes a significant beating upon failure, dropping well below that
of the PBFT baseline. The overall performance depends on how often failures occur
and how often Aliph switches between main and backup protocols, i.e., parameter k.
On the other hand, the throughput of PBFT does not change in any obvious way after
failure injection, showing its stability during failure scenarios. Zyzzyva, in comparison,
in the presence of failures, uses its slower backup mode (i.e., clients collects and sends
certificate) which exhibits even lower throughput than PBFT.

We configured BChain with a fairly high timeout value (100ms). In fact, BChain
can use much smaller timeouts, since one re-chaining only takes about the same time as
it takes for BChain to process a single request. While the signature-based, view-change
like switching taken by Aliph introduces a significant time overhead.

We claim that even in presence of a Byzantine failure, the throughput of BChain-3
and BChain-5 would not significantly change, except that there might be two (instead
of one) short periods where the throughput drops to zero. Note BChain-3 uses at most
two re-chainings to handle a Byzantine faulty replica, while BChain-5 uses only one.

Timer setup and performance attack evaluation. We now show how to set up the
timers for replicas in the chain as discussed in §3.4. Initially, there are no faulty replicas
and we set the timers based on the average latency of the first 1000 requests. Figure 5(b)
illustrates the timer setup procedure for a correct replica pi, where each bar represents
the actual latency of a request, line 1 is the average latency δ1,pi , line 2 is the perfor-
mance threshold timer ∆′1,pi

used to deter performance attacks, and line 3 is the normal
timer ∆1,pi

. In our experiment, we set ∆′1,pi
= 1.1δ1,pi

and ∆1,pi
= 1.3δ1,pi

. That is,
we expect the performance reduction to be bounded to 10% of the actual latency during
a performance attack by a dedicated adversary.

To evaluate the robustness against a timer-based performance attack, we ran 10
rounds of experiments using the 0/0 benchmark, each with a sequence of 10000 re-
quests. We assume there are no faulty replicas initially and we use the first 1000 request
to train the timers. For each experiment, starting from the 1001th request, we let a
replica mount a performance attack by intentionally delaying messages sent to its pre-
decessor. To simulate different attacks, we simply let the faulty replica sleep for an
“appropriate” period of time following different strategies. However, as expected our
findings show that the actions of a faulty replica is very limited: it either needs to be
very careful not to be accused, thus imposing only a marginal performance reduction,
or it will be suspected which will lead to a re-chaining and then a reconfiguration.



6 Conclusion

We have presented BChain, a new chain-based BFT protocol that outperforms prior
protocols in fault-free cases and especially during failures. In the presence of fail-
ures, instead of switching to a slower, backup BFT protocol, BChain leverages a novel
technique—re-chaining—to efficiently detect and deal with the failures such that it can
quickly recover its steady-state performance. BChain does not rely on any trusted com-
ponents or unproven assumptions.

References

1. M. Abd-El-Malek, G. Ganger, G. Goodson, M. Reiter, and J. Wylie. Fault-scalable Byzantine
fault-tolerant services. SOSP 2005, pp. 59–74, ACM Press, 2005.

2. J. Adams and K. Ramarao. Distributed diagnosis of Byzantine processors and links. ICDCS
1989, pp. 562–569, IEEE Computer Society, 1989.

3. I. Avramopoulos, H. Kobayashi, R. Wang, and A. Krishnamurthy. Highly secure and efficient
routing. INFOCOM 2004, IEEE Computer and Communication Society, 2004.

4. R. Baldoni, J. Helary, and M. Raynal. From crash fault-tolerance to arbitrary-fault tolerance:
towards a modular approach. DSN 2000, pp. 273–282, 2000.

5. T. Benzel. The science of cyber security experimentation: the DETER project. ACSAC, 2011.
6. M. Castro and B. Liskov. Practical Byzantine fault tolerance. OSDI, pp. 173–186, 1999.
7. M. Castro and B. Liskov. Practical Byzantine fault tolerance and proactive recovery. ACM

Trans. Comput. Syst, 20(4): 398–461, 2002.
8. T. Chandra, V. Hadzilacos, and S. Toueg. The weakest failure detector for solving consensus.

J. ACM, 43(4): 685–722, 1996.
9. T. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed systems. Journal

of the ACM, 43(2): 225–267, March 1996.
10. M. Chiang, S. Wang, and L. Tseng. An early fault diagnosis agreement under hybrid fault

model. Expert Syst. Appl, 36(3): 5039–5050, 2009.
11. A. Clement, E. Wong, L. Alvisi, M. Dahlin, and M. Marchetti. Making Byzantine fault toler-

ant systems tolerate Byzantine faults. NSDI 2009, pp. 153–168, USENIX Association, 2009.
12. R. Coker. www.coker.com.au/bonnie++.
13. A. Clement, M. Kapritsos, S. Lee, Y. Wang, L. Alvisi, M. Dahlin, and T. Riche. UpRight

cluster services. SOSP ’09, pp. 277–290, ACM press, 2009.
14. J. Cowling, D. Myers, B. Liskov, R. Rodrigues, and L. Shrira. HQ replication: A hybrid

quorum protocol for Byzantine fault tolerance. OSDI, pp. 177–190, USENIX Assn., 2006.
15. A. Doudou and A. Schiper. Muteness failure detectors for consensus with Byzantine pro-

cesses, Brief announcement in PODC, pp. 315, ACM press, 1998.
16. A. Doudou, B. Garbinato, R. Guerraoui, and A. Schiper. Muteness failure detectors: Specifi-

cation and implementation. Proc. Third EDCC, LNCS vol. 1667, pp. 71–87, Springer, 1999.
17. A. Doudou, B. Garbinato, and R. Guerraoui. Encapsulating failure detection: from crash to

Byzantine failures. Ada-Europe 2002, pp. 24–50, Springer, 2002.
18. C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the presence of partial synchrony. J.

ACM 35(2): 288–323, 1988.
19. M. Fischer, N. Lynch, and M. Paterson. Impossibility of distributed consensus with one faulty

process. J. ACM 32(2): 374–382, 1985.
20. S. Ghemawat, H. Gobioff, and S. Leung. The Google file system. SOSP, pp. 29–43, 2003.
21. R. Guerraoui, N. Knezevic, V. Quema, and M. Vukolic. The next 700 BFT protocols. EuroSys

2010, pp. 363–376, ACM, 2010.



22. A. Haeberlen, P. Kouznetsov, and P. Druschel. PeerReview: practical accountability for dis-
tributed systems. SOSP 2007, pp. 175–188, ACM, 2007.

23. J. Hendricks, S. Sinnamohideen, G. Ganger, and M. Reiter. Zzyzx: scalable fault tolerance
through Byzantine locking. DSN 2010, pp. 363–372, IEEE Computer Society, 2010.

24. M. Hirt, U. Maurer, B. Przydatek. Efficient secure multi-party computation. ASIACRYPT
2000, pp. 143–161, 2000.

25. H. Hsiao, Y. Chin, and W. Yang. Reaching fault diagnosis agreement under a hybrid fault
model. IEEE Transactions on Computers, vol. 49, no. 9, Sep. 2000.

26. R. Kapitza, J. Behl, C. Cachin, T. Distler, S. Kuhnle, S. Mohammadi, W. S-Preikschat, and
K. Stengel. CheapBFT: resource-efficient byzantine fault tolerance. EuroSys, 2012.

27. S. Kent, C. Lynn, and K. Seo. Secure border gateway protocol (S-BGP). IEEE JSAC, 18(4):
582–592, 2000.

28. R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong. Zyzzyva: speculative Byzantine
fault tolerance. SOSP 2007, pp. 45–58, ACM, 2007.

29. L. Lamport. Using time instead of timeout for fault-tolerant distributed systems. Trans. on
Programming Languages and Systems 6(2), 254–280, 1984.

30. L. Lamport, D. Malkhi, and L. Zhou. Reconfiguring a state machine. SIGACT News 41(1):
63–73, 2010.

31. D. Malkhi and M. Reiter. Unreliable intrusion detection in distributed computations. CSFW,
pp. 116–125, 1997.

32. D. Malkhi and M. Reiter. Byzantine quorum systems. Distributed Computing, 11(4), 1998.
33. F. Preperata, G. Metze, and R. Chien. On the connection asssignment problem of diagnosable

systems. IEEE Transactions on Electronic Computers, EC–16(6): 848–854, December 1967.
34. K. Ramarao and J. Adams. On the diagnosis of Byzantine faults. Proc. Symp. Reliable Dis-

tributed Systems, pp. 144–153, 1988.
35. F. Schneider. Implementing fault-tolerant services using the state machine approach: A tuto-

rial. ACM Computing Surveys 22(4): 299–319, 1990.
36. M. Serafini, A. Bondavalli, and N. Suri. Online diagnosis and recovery: on the choice and

impact of tuning parameters. IEEE Trans. Dependable Sec. Comput, 4(4): 295–312, 2007.
37. K. Shin and P. Ramanathan. Diagnosis of processors with Byzantine faults in a distributed

computing system. Proc. Symp. Fault-Tolerant Computing, pp. 55–60, July 1987.
38. R. van Renesse, C. Ho, and N. Schiper. Byzantine chain replication. OPODIS, 2012.
39. R. van Renesse and F. B. Schneider. Chain replication for supporting high throughput and

availability. OSDI 2004, pp. 91–104, USENIX Association, 2004.
40. M. Vukolic. Abstractions for asynchronous distributed computing with malicious players.

PhD thesis. EPFL, Lausanne, Switzerland, 2008.
41. C. Walter, P. Lincoln, and N. Suri. Formally verified on-line diagnosis. IEEE Trans. Software

Eng, 23(11): 684–721, 1997.

A BChain-3 Reconfiguration

Our reconfiguration technique works in concert with our re-chaining protocol. Recall
that BChain-3 re-chaining protocol moves faulty replicas to set B, while replicas that
remain in A continues processing client requests. The reconfiguration procedure op-
erates out-of-band, and thus does not disrupt request processing. Since it can be done
out-of-band, it is not time sensitive, unless more failures occur.

An alternative to reconfiguration could be to recover suspected replicas. However,
recovery is not possible for some types of failures, such as permanent failures. Recovery



may also take a long time, e.g. waiting for a machine to reboot, leaving the system
vulnerable to further failures.

The key idea of our reconfiguration algorithm is to replace the replicas that were
moved to set B, with new replicas. A new replica first acquires a unique identifier. It also
obtains a public-private key pair, and a shared symmetric key with each other replica in
the system.

To initialize reconfiguration, a new replica in B with a unique identifier u sends
a 〈RECONREQUEST〉 to all replicas in the system. Upon receiving the request, correct
replicas send signed messages with their current 〈HISTORY〉 to replica u. Meanwhile,
the replicas in A continue to execute the chaining protocol, where they also forward
〈CHAIN〉 messages to the newly joined replica u. In addition, replicas in A also retrans-
mit missing 〈CHAIN〉messages to the replicas in B, including u, as the protocol requires.
After collecting at least f + 1 matching authenticated 〈HISTORY〉 messages, u updates
its state using the retrieved history and the 〈CHAIN〉 messages it has received. At this
point, u can be promoted to A when deemed necessary.

It is clear that the reconfiguration algorithm can be performed concurrently with
request processing, and as such is not time sensitive. This is because a newly joined
replica is not immediately put into active use. Depending on the re-chaining algorithm,
a new replica will not be used until f re-chainings have taken place (Algorithm 2), or
bf/2c re-chainings with Algorithm 3.

Note that BChain-3 remains safe even if no reconfiguration procedure is used. In the
case that there are only a small number of faulty replicas, e.g. 3t<f , no regular recon-
figuration is required to ensure liveness. Reconfiguration can be triggered periodically,
as in other BFT protocols, or when frequent view changes and re-chainings occur.

Also note that, one might introduce a third set C that contains all of the “faulty”
replicas, while B contains those that have been reconfigured and can be moved back to
A on demand. The system has to wait if B is empty.

B Theorems and Proofs

B.1 BChain-3 Re-chaining-I

Theorem 1. Let t denote the number of faulty replicas in the chain where t ≤ f and
n = 3f + 1. If the head is correct and 3t ≤ f , the faulty replicas are moved to
the end of chain after at most 3t re-chainings. If the head is correct and 3t > f , the
faulty replicas are moved to the end of chain with at most 3t re-chainings and at most
3t − f replica reconfigurations, assuming further that each individual replica can be
reconfigured within f re-chainings.

Proof: We assume all the timers are correctly set. We also assume that a single replica
that is moved to set B can be correctly reconfigured within f re-chainings. Namely, it
becomes correct before it is again moved from set B to set A.

The proof is divided into four parts (Lemmas 2–5). Lemma 1 formally proves that
if there is only one faulty replica in the chain, it will be moved to the end of the chain
within at most two re-chainings. Lemma 2 captures an essential fact which is used on



multiple occasions. Lemma 3 shows the general result that all faulty replicas are even-
tually moved to set B. Lemma 4 proves the maximum number of re-chainings required
to remove t failures in the worst case. It also bounds the number of reconfigurations.

Faulty replicas can be divided into two types: first, a replica that does not behave ac-
cording to the protocol so that the replica’s predecessor fails to receive the valid 〈ACK〉
message on time, and second, a replica that sends a 〈SUSPECT〉 message maliciously,
regardless of whether its successor is correct or not.

Lemma 1. If there is only one faulty replica, it is moved to the end of the chain within
two re-chainings. At most two replicas are moved to set B.

Proof of Lemma 1: First, if the only faulty replica, say, pi, causes its (correct) prede-
cessor

↼

p i to fail to receive 〈ACK〉 message on time, it might trigger many 〈SUSPECT〉
messages sent from replicas ahead of pi. However, since the head only deals with
the 〈SUSPECT〉 message sent by the replica which is the closest to the proxy tail, the
〈SUSPECT〉 message sent from

↼

p i will be handled. In this case, the faulty replica pi is
moved to the tail with only one re-chaining.

Second, we consider the case where the faulty replica pi maliciously accuses its
successor

⇀

p i. According to our re-chaining algorithm, the faulty replica pi (i.e., the
accuser) becomes the proxy tail after one re-chaining. The proxy tail does not have
a successor, so it is not capable of sending any 〈SUSPECT〉 messages to accuse any
replicas. Therefore, pi will be moved to the end of the chain if there is another re-
chaining, in which case the

↼

p i fails to receive the 〈ACK〉 message on time. In summary,
the faulty replica pi can be moved to the tail with at most two re-chainings.

In either case, a single faulty replica is moved to the end of the chain within at most
two re-chainings, and furthermore, at most two replicas are moved to set B. 2

Lemma 2. If a correct replica pi sends a 〈SUSPECT〉 message to accuse its successor
⇀

p i while
⇀

p i does not send a 〈SUSPECT〉 message,
⇀

p i must be faulty.

Proof of Lemma 2: Suppose
⇀

p i is correct. If the correct replica, pi, sends a 〈CHAIN〉
message but fails to receive an 〈ACK〉 message on time, then pi sends a 〈SUSPECT〉
message to accuse its successor. If

⇀

p i is correct but does not send a 〈SUSPECT〉message
then it must have received the corresponding 〈ACK〉 message on time. In this case, pi
can also receive the 〈ACK〉 message on time as well, since both of them are assumed to
be correct. Therefore, pi should not send a 〈SUSPECT〉message in this case and

⇀

p i must
be faulty. 2

Lemma 3. In the presence of t failures, assuming faulty replicas moved to set B are
correctly reconfigured, one faulty replica is eventually moved to set B. This results in
t− 1 faulty replicas in set A. Therefore, all the faulty replicas are eventually moved to
set B.

Proof of Lemma 3: We consider the suspect message which is the first one handled by
the head. (Recall that the head only deals with one 〈SUSPECT〉message that is sent from
the replica that is closest to the proxy tail.) On the one hand, if the 〈SUSPECT〉 message



is generated by a correct replica, according to Lemma 2, a faulty replica is moved to set
B with just this re-chaining, resulting in t−1 faulty replicas in setA. On the other hand,
if the 〈SUSPECT〉 message is generated by a faulty replica px, it will become the proxy
tail after one re-chaining. Since the proxy tail is not capable of generating 〈SUSPECT〉
messages, the behavior of the px can be then either correct, or faulty, which will cause
↼

px to fail to receive 〈ACK〉 on time.
We describe four cases in additional detail: (1)

↼

px is faulty and generates a 〈SUSPECT〉
message to accuse px, and px is moved to the end of the chain with one re-chaining;
(2)

↼

px is faulty and moved to the end of the chain in another re-chaining due to the
〈SUSPECT〉 message of the predecessor of

↼

px; (3)
↼

px is correct and px behaves in a
faulty manner. This means

↼

px failed to receive 〈ACK〉 message on time, so px is moved
to the end of the chain due to the 〈SUSPECT〉 message from

↼

px; (4) otherwise, after an-
other re-chaining, px stays in set A and becomes the predecessor of the new proxy tail
pk. This indicates either of the following two cases: (4a) pk is correct; (4b) pk is faulty.

In any of the first three cases, a faulty replica is moved to the end of the chain,
resulting in at most t− 1 faulty replicas in the system.

We now discuss the last two cases and how the re-chaining algorithm eventually
removes a faulty replica, resulting in t− 1 faulty replicas in set A.

For case (4a), a correct replica pk becomes the proxy tail because it accuses its suc-
cessor pj in a previous re-chaining. According to Lemma 2, pj must be faulty. There-
fore, a faulty replica has been moved to the end of the chain.

In case (4b), px and pk are both faulty and pk is not capable of generating 〈SUSPECT〉
messages. Now the two faulty replicas px and pk share the same “risk,” in the sense that
if either of the two replicas behaves in a faulty manner, one of them is moved to set B in
another re-chaining. Indeed, if px generates a 〈SUSPECT〉 message to signal the failure
of pk, pk is moved to the end of the chain, resulting in t− 1 faulty replicas in set A. If
px or pk causes

↼

px to fail to receive 〈ACK〉, px or pk is moved to set B. Therefore, in
order to stay in setA, both replicas must behave correctly. Inductively, if no more faulty
replicas were to be removed afterwards, all the t faulty replicas would share the same
risk. Since we assume that the faulty replicas moved to set B are correctly reconfigured,
we do not need to worry about the cases where the faulty replicas again move back to
setA. With one more re-chaining, at least one faulty replica is moved to set B, resulting
in t− 1 replicas in the chain.

We have proved that if there are t faulty replicas in the chain, the algorithm is able to
move at least one faulty replica to the end of the chain, resulting in t− 1 faulty replicas
within t+ 1 re-chainings. Iteratively, all the faulty replicas are moved to set B. 2

Lemma 4. All the faulty replicas are moved to set B within 3t re-chainings and at most
3t replicas have been moved to set B. In the presence of t failures, max(3t − f, 0)
reconfigurations are required.

Proof of Lemma 4: In order to maximize the number of re-chainings, faulty replicas
must accuse correct replicas without being moved to set B. This is because otherwise at
least one faulty replica is moved to set B in one re-chaining.

Initially, a faulty replica can accuse its successor while not being moved to set B.
After one re-chaining, this faulty replica becomes the proxy tail. It is able to accuse



another correct replica only if it moves forward later, in which case some other re-
chaining must occur. Note that the reason that we put the first replica in set B just
behind the head is therefore clear: to prevent correct replicas originally in set B from
becoming the successors of faulty replicas after re-chainings. However, according to
Lemma 2, such a correct replica accused by the proxy tail must have already accused
a faulty replica so that it becomes the proxy tail. In other words, if each of the faulty
replicas accuses more than one correct replica, the correct replica must have already
accused a faulty replica. In summary, if there are t faulty replicas, they are able to
accuse at most t correct replica before all of them become the proxy tail. Additionally,
all t faulty replicas are able to accuse another t − 1 correct replicas in total. Some of
the faulty ones may accuse more than one correct replica but others will not get the
chance before they are moved to set B. Indeed, if the t faulty replicas had accused at
least t correct replicas, the t correct replicas must have already accused t faulty replicas,
resulting in no faulty replicas in the system. The maximum re-chainings for t failures is
therefore t+2(t− 1)+2, where the last two re-chainings is due to Lemma 1. Since set
B contains f replicas, 3t− f replicas must be reconfigured to avoid the faulty replicas
moved to set B going back to set A. If 3t ≤ f then no reconfigurations are required.
Lemma 4 now follows. 2

B.2 BChain-3 Re-chaining-II

Theorem 2. Let t denote the number of faulty replicas in the chain where t ≤ f and
n = 3f + 1. If the head is correct and 2t ≤ f , the faulty replicas are moved to the end
of chain after at most 2t re-chainings. If the head is correct and 2t > f , assuming that
each individual replica can be reconfigured within bf/2c re-chainings, then the faulty
replicas are moved to the end of chain with at most 2t re-chainings and at most 2t− f
replica reconfigurations.

The proof for this theorem easily follows given that once a 〈SUSPECT〉 message is han-
dled, there must be a faulty replica which has already moved to the tail of the chain. To
justify the above fact, one simply needs to prove that for a 〈SUSPECT〉 message handled
by the correct head, one of the accuser and the accused must each be faulty. The proof
is relatively trivial and we therefore omit the details.

B.3 BChain-3 Safety

Theorem 3 (Safety). If no more than f replicas are faulty, non-faulty replicas agree
on a total order on client requests.

Proof: The proof of the theorem is composed of two parts. First, we prove that if a
request m commits at a correct replica pi and a request m′ commits at a correct replica
pj with the same sequence number, it holds that m equals m′ within a view and across
views. Then we prove that, for any two requests m and m′ that commit with sequence
number N and N ′ respectively and N < N ′, the execution history Hi,N is a prefix of
Hi,N ′ for at least one correct replica pi. Together, they imply the safety of BChain-3.
I We first prove the first part within a view and begin by providing the following lemma.



Lemma 5. If a request m commits at a correct replica pi, at least 2f + 1 replicas
(including pi) accept the 〈CHAIN〉 message with the same m and sequence number.

Proof of Lemma 5: We consider two cases: pi ∈ A, and pi ∈ B.

B pi ∈ A. We further consider two sub-cases: (1) pi is among the first f replicas of
the chain; (2) pi is among the subsequent replicas (i.e., pi is among the (f+1)th replica
and the (2f + 1)th replica).

Case (1): It is easy to see that if pi is among the first f replicas, pi and all its preceding
replicas accept a 〈CHAIN〉 message, since pi receives a 〈CHAIN〉 message with valid
signatures by P(pi). It remains to be shown that all the subsequent replicas of pi accept
the 〈CHAIN〉 message.

To prove this, we must show that at least one correct replica p′ among the last f +1
replicas in set A has sent an 〈ACK〉 message and all the replicas between pi and p′ have
sent 〈ACK〉 messages. Note that if a correct replica sends an 〈ACK〉 message, it must
have already accepted the corresponding 〈ACK〉 message and the 〈CHAIN〉 message.
Meanwhile, since p′ receives an 〈ACK〉 message with signatures from S(pi), all the
subsequent replicas of p′ have already sent an 〈ACK〉 message. Combining all of this,
all subsequent replicas of pi in the chain send an 〈ACK〉message and accept the 〈CHAIN〉
message with the same m and sequence number.

We now prove by induction that at least one correct replica p′ among the last f +
1 replicas sends an 〈ACK〉 message with the same m and sequence number and all
the replicas between pi and p′ send an 〈ACK〉 message. Clearly, pi accepts an 〈ACK〉
message with f+1 signatures by S(pi). Among S(pi), at least one replica p′′ is correct.
If p′′ is among the last f + 1 replicas, we are done here, since S(pi) contains all the
replicas between pi and p′′. Otherwise, inductively, we can eventually find at least one
correct replica p′ as required which is among the last f + 1 replicas. Meanwhile, each
correct replica between pi and p′ ensures that all the replicas between pi and p′ have
sent 〈ACK〉 messages.

Case (2): Likewise, it is easy to see that if pi is among the last f +1 replicas, pi and all
its subsequent replicas accept a 〈CHAIN〉 message since pi receives an 〈ACK〉 message
with valid signatures by S(pi). We need to show all the preceding replicas of pi accept
the 〈CHAIN〉 message.

Similarly, we just need to prove that at least one correct replica p′ among the first
f+1 replicas has sent a 〈CHAIN〉message and all the replicas between pi and p′ send an
〈CHAIN〉 message. We show this by induction. Note that pi accepts 〈CHAIN〉 message
with f + 1 signatures by P(pi). Among P(pi), at least one replica p′′ is correct. If
p′′ is among the first f + 1 replicas, again we are done here. Otherwise, p′′ receives
〈CHAIN〉message with f +1 signatures from P(p′′) and at least one replica in P(p′′) is
correct. Continually following the step, at least one correct replica p′ as required can be
found among the first f + 1 replicas. As each correct replica between pi and p′ sends
a 〈CHAIN〉 message with f + 1 signatures, all the replicas between pi and p′ send a
〈CHAIN〉 message.

B pi ∈ B. If pi is in set B, it receives f + 1 matching 〈CHAIN〉 messages from replicas
in setA. Among the f+1 replicas, at least one is correct. If the correct replica is among
the first f replicas, following from the first case at least 2f +1 replicas accept and send



〈CHAIN〉message withm. If the correct replica is among the last f+1 replicas in setA,
following from the second case, at least 2f + 1 replicas then accept and send 〈CHAIN〉
message with m.

In either case (pi ∈ A or pi ∈ B), if a request m commits at pi, at least 2f + 1
replicas (including itself) accept and send 〈CHAIN〉message for the samem. The lemma
now follows. 2

We now show the proof and again address two cases—first where the two requests
commit with the same re-chaining number, and second with different re-chaining num-
bers.

First, we need to prove that if m commits at pi and m′ commits at pj with the same
re-chaining number ch, m equals m′. Indeed, following Lemma 5, suppose m commits
at pi with ch, at least 2f + 1 replicas accept the 〈CHAIN〉 message with m, and at least
2f + 1 replicas accept the 〈CHAIN〉 message with m′. Since they accept the 〈CHAIN〉
message with the same chain order, at least one correct replica accepts and sends two
conflicting 〈CHAIN〉 messages—one of them contains m while the other contains m′—
which causes a contradiction. Thus, it must be case that m equals m′.

We now prove that if m commits at pi and m′ commits at pj with different re-
chaining numbers, the statement that m equals m′ remains true. We assume that m
commits at pi with ch and m′ commits at pj with ch′. Without loss of generality, ch′ >
ch.

During the re-chainings, some replica(s) may be reconfigured. However, our re-
chaining and reconfiguration algorithms ensure that once a replica is reconfigured it still
has the same state as the non-faulty replicas by maintaining the history and (missing)
messages from other replicas.

We now proceed in the proof via a sequence of hybrids. Any two consecutive hy-
brids differ from each other in their configurations. However, only one replica gets
reconfigured in the latter hybrid. The initial hybrid is the just the configuration where
m commits at a replica pi with a re-chaining number ch, while the last hybrid is the one
where m′ commits at a replica pj with a re-chaining number ch′.

Since m commits at pi with ch, according to Lemma 5, at least 2f + 1 replicas
accept and send an 〈CHAIN〉 message for m. The replica that has just been reconfigured
must have the same state as the rest of the non-faulty replicas due to our reconfiguration
algorithm. It is easy to prove via a hybrid argument that there exists two consecutive
hybrids where at least 2f + 1 replicas accept an 〈CHAIN〉 message for m and N in the
former hybrid, and at least 2f +1 replicas accept an 〈CHAIN〉 message for m′ and N in
the latter hybrid.

Intersection of two Byzantine quorums would imply that at least one correct replica
accepts two conflicting messages with the same sequence number, unless the replica
that has been just reconfigured might be the correct one. Even in this case, it still causes
a contradiction, as it must accept m with N according to our reconfiguration algorithm.
However, if accepts them′ withN instead, this contradicts our reconfiguration assump-
tion that reconfigured replica is correct after joining.

In either case, we have that if m commits at pi and m′ commits at pj with the same
sequence number during the same view, it holds that m equals m′.

Across views.



We now prove that if m commits at pi with view number v and m′ commits at pj
with view number v′ where v′ > v and both with the same sequence number N , it still
holds that m equals m′.

Since m commits at pi in view v, according to Lemma 5, at least 2f + 1 replicas
accept m with N . Replica pi includes a proof of execution for request m with N in the
following view changes until it garbage collects the information about a request with
sequence number N . Notice that reconfigured replicas still have the same state as the
non-faulty replicas and the statement even with reconfigured replicas remains true.

Request m′ commits in a later view v′. According to the protocol, the head in view
v′ sends a 〈CHAIN〉 message with m′ and N after view change. This implies either of
the following two cases in previous view(s). First, every view change message contains
an empty entry for sequence number N . However, this cannot be true because pi did
not garbage collect its information about requestmwith sequence numberN . The other
case is that at least one view change message containsm′ for sequence numberN with a
proof of execution. The proof of execution from a replica p in setA includes a 〈CHAIN〉
message with signatures by P(p) and an 〈ACK〉 message with signatures by S(p). The
proof of execution from a replica in set B includes f + 1 〈CHAIN〉 messages.

We now show that if at least one view change message in a view v1 (v ≤ v1 < v′)
contains m′ and N with a proof of execution, at least 2f +1 replicas accept m′ with N
in view v1. Assuming replica p sends a view change message with a proof of execution,
there are three cases. First, if p is among the first f replicas, the proof of execution
includes an 〈ACK〉 message with f +1 signatures. In the chaining protocol, at least one
correct replica signs and sends an 〈ACK〉message. Therefore, requestm′ with sequence
number N commits at a correct replica. According to Lemma 5, at least 2f +1 replicas
accept m′ with N . Second, if p is among the last f + 1 replicas in set A, the proof
of execution for m′ with N includes a 〈CHAIN〉 message with f + 1 signatures and an
〈ACK〉message with signatures by S(p). As proved in Lemma 5, at least 2f+1 replicas
accept m′ with N . Third, if p is in set B, the proof of execution of m′ includes f + 1
〈CHAIN〉 messages, which are generated by at least one correct replica in the chaining
protocol. Since a correct replica sends a 〈CHAIN〉 message to replicas in setA when the
request is committed locally, according to Lemma 5, at least 2f + 1 replicas accept m′

with N .
Since a 〈NEWVIEW〉 message by the head includes all the view change messages,

there exists a view v2 (v ≤ v2 ≤ v1 < v′) in which pi contains m and N with a proof
of execution in its view change message while at least 2f + 1 replicas accept m′ in the
chaining protocol. In other words, at least one correct replica accepts both m and m′ in
view v2. This causes a contradiction.

I Next we prove the second part of our theorem that for any two requests m and m′

that commit with sequence number N and N ′ respectively, the execution history Hi,N

is a prefix of Hi,N ′ for at least one correct replica pi. Specifically, if m commits at
any correct replica with sequence number N , according to Lemma 5, at least 2f + 1
replicas acceptm. Similarly, ifm′ commits at any correct replica with sequence number
N ′, according to Lemma 5, at least 2f + 1 replicas accept m′. Among the 2f + 1
replicas, at least f + 1 replicas are correct. According to our protocol, correct replicas
only accept 〈CHAIN〉 messages in sequence-number order. All the sequence numbers



between N and N ′ − 1 must have been assigned. On the other hand, at least 2f + 1
replicas accept m with N . Since there are at least 2f + 1 correct replicas, m and m′

are assigned N and N ′ for at least one correct replica pi. Therefore, Hi,N is a prefix of
Hi,N ′ .

B.4 BChain-3 Liveness

Theorem 4 (Liveness). If no more than f replicas are faulty, then if a non-faulty
replica receives an request from a correct client, the request will eventually be executed
by all non-faulty replicas. Clients eventually receive replies to their requests.

Proof: BChain ensures liveness in a partially synchronous environment. We consider
the system only after global stabilization time (i.e., only during periods of synchrony).
Note that the bounds on communication delays and processing delays exist but are both
probably unknown even to replicas. We now prove that BChain is live.

If the replicas in set A are all correct and timers are correctly maintained, then our
chaining subprotocol (Section 3.3) guarantees that clients receive replies from the proxy
tail.

We consider the case where the head is correct, timers are correctly maintained,
and there might be faulty replicas. As long as the faulty replicas behave incorrectly,
according to Theorem 1 or Theorem 2 (depending on which re-chaining algorithm one
chooses), faulty replicas are moved to the tail of the chain (where, if needed, they are
reconfigured), non-faulty replicas reach an agreement, and clients receive replies from
proxy tail. If otherwise faulty replicas do not behave incorrectly then they still reach an
agreement. (No further latency can be induced by intermittent or transient adversaries.)
A minor corner case is that the proxy tail behaves correctly in reaching an agreement but
fails to send a reply to some client, in which case the client will retransmit its request
to all the replicas in set A. Upon receiving 2f + 1 consistent replies it accepts this
reply. Alternatively, we could allow clients to suspect the proxy tail such that it can be
removed in this case, just as in Zyzzyva and Shuttle.

It is possible that even in the case where the head is correct and timers are correctly
set, view change can be triggered, since there might be too many re-chainings and some
request is not completed in the current view. There are two additional cases that can
inflict view changes: the head is faulty, and timers are not set correctly. As illustrated in
Algorithm 4 in Section 3.5, the failure detection (re-chaining) timer∆1 and view change
timer ∆2 (for request processing) are adjusted in every view change when a replica
receives the 〈NEWVIEW〉 message. They together can eventually move the system to
some new view where the head is correct, timers are set correctly, and the re-chaining
time is readily available. In the new view, replicas will reach an agreement and clients
eventually receive their request replies.

To avoid frequent view changes, the timers are adjusted gradually. It is worth men-
tioning that in contrast to PBFT [6], we separate timer ∆2 for request processing from
the timer ∆3 to wait for 〈NEWVIEW〉. ∆3 will be adjusted to g3(∆3), when a replica
collects 2f +1 〈VIEWCHANGE〉 messages but does not receive 〈NEWVIEW〉 message on
time.



BChain follows the “amplification” step from f + 1 to 2f + 1 〈VIEWCHANGE〉.
Namely, if a replica receives f + 1 valid 〈VIEWCHANGE〉 messages from other replicas
with views greater than its current view, it also sends a 〈VIEWCHANGE〉 message for the
smallest view. This prevents starting the next view change too late.

Note that faulty replicas (other than the head) cannot cause view changes, for the
same reason as other quorum based BFT protocols. Also, although the faulty head can
cause a view change, the head cannot be faulty for more than f consecutive views.

To prevent the timeouts∆1 and∆2 from increasing unbounded, we levy restrictions
on the upper bounds for both. Slow replicas will be identified as faulty ones, which helps
the system maintain its efficiency.

B.5 BChain-5 Re-chaining

Theorem 5. Let t denote the number of faulty replicas in the chain where t ≤ f and
n = 5f + 1. If the head is correct, the faulty replicas can be moved to set B by the
BChain-5 re-chaining algorithm after at most t re-chainings.

The idea underlying the new re-chaining algorithm is as follows. A 〈SUSPECT〉mes-
sage (with px and py being the accuser and accused, respectively) is triggered, either
because px fails to receive the 〈ACK〉 message from py (due to, e.g., a timing failure or
a omission failure), or because a replica px maliciously accused py , regardless of the
correctness of py . For either case, one re-chaining can move at least one faulty replica
to set B. Note that every re-chaining might introduce some faulty replicas originally in
set B to set A. Thus, it is not necessarily the case that every re-chaining can reduce the
number of faulty replicas in set A by at least one. (Note it is possible that the number
of faulty ones might even increase by one.) However, we claim that after at most f re-
chainings, all the f failures can be moved to set B. This is further due to the fact that
faulty replicas that have been moved through re-chainings shall not have a chance to set
A again, since the cardinality of set B is exactly 2f . The theorem easily follows from
the discussion above.

B.6 BChain-5 Safety and Liveness

Theorem 6. BChain-5 achieves safety in the asynchronous environment and achieves
liveness in the partially synchronous environment.

The proofs for the safety and liveness properties of BChain-5 are simpler than those
of BChain-3, as BChain-5 avoids the reconfiguration mechanism. The main lemma to
be proven for its safety is that if a request m commits at a correct replica then at least
3f + 1 replicas accept the 〈CHAIN〉 message with the same m and sequence number.

C BChain-3 for Persistent Failures

We also discuss a variant of BChain-3 that handles persistent failures [33], providing
an efficient algorithm for systems that exhibit this type of failure. Persistent failures (or



permanent failures) are failures such that replicas constantly violate the specification
of the predetermined protocols. Accordingly, failures other than persistent ones include
transient failures and intermittent failures, which do not manifest themselves all the
time and occur at irregular times.

We now discuss a re-chaining algorithm for BChain-3 that allows more efficient
handling of an important, but general class of Byzantine failures, namely persistent
failures. Replicas exhibiting persistent failures will constantly violate their specification
in an arbitrary way. This includes timing failures, where correct results are obtained,
but delivered too late, conventional omission failures, and permanent failures where a
replica cannot recover to a correct state after having been faulty. Persistent failures also
captures a large class of Byzantine adversaries such as “advanced, persistent threats” to
subvert the system.

Algorithm 5 shows the re-chaining algorithm used with BChain-3, which is suit-
able for applications where there are only persistent adversaries. As in BChain-3, the
head handles only one 〈SUSPECT〉 message in each re-chaining and only the 〈SUSPECT〉
message sent from the replica which is the closest to the current proxy tail.

Algorithm 5 PBChain-3 Re-chaining
1: upon 〈SUSPECT, py,m, ch, v〉 from px {At the head, ph}
2: if px 6= ph then {px is not the head}
3: px is put to the (2f + 1)th position
4: py is put to the end

Theorem 7. PBChain-3 re-chaining algorithm incorporates the benefits of Algorithms
2 and 3. First, at least one faulty replica can be moved to set B with only two re-
chainings. Second, the rate of the reconfiguration process required is the same as that
of Algorithm 2. Furthermore, in the presence of f faulty replicas, the number of replicas
to be reconfigured is f instead of 2f .

Proof: We assume that the correct head currently handles a 〈SUSPECT〉 message sent
from px to accuse its successor py . This implies that px is the replica who sent a
〈SUSPECT〉 message and is the closest to the proxy tail.

We address four cases: (1) px and py are both correct; (2) px is correct and py is
faulty; (3) px is faulty and py is correct; and (4) px and py are both faulty.

B Case (1): Since we now consider the case in a synchronous environment, the situation
where px and py are both correct and px generates a 〈SUSPECT〉 message to accuse its
successor py is not possible. It is in fact easy to show that any other failures would not
cause a 〈SUSPECT〉 message sent from px to be handled.

B Case (2): In this case, replica px is correct and accuses its faulty successor py . Apply-
ing our re-chaining algorithm, py can be moved to the end of the chain with only one
re-chaining. As an example in Figure 3, replica p4 has a timing failure. This causes p3
to send a 〈SUSPECT〉 message up the chain to accuse p4. According to our re-chaining



algorithm, p3 is moved to the (2f +1)th position and becomes the proxy tail, and p4 is
moved to the end of the chain and becomes the tail.

〈SUSPECT〉

1 2f+1 3f 3f+1

head proxy tail tail

2 3

(a) p2 generates a 〈SUSPECT〉 message to accuse p3

1 3f+1

head proxy tail tail

32f+1 2

timeout!〈SUSPECT〉

2f+2

(b) p2f+2 generates a 〈SUSPECT〉 message to accuse p2

1 2f+1

head proxy tail tail

22f 32f+3

(c) p2 is moved to the tail

Fig. 6. Replica p2 and replica p3 are both faulty. Replica p2 generates a 〈SUSPECT〉 message to
accuse p3, and p2 becomes the proxy tail and p3 is moved to the end of the chain. Replica p2f+2

becomes the predecessor of p2, as captured in Figure 6(b). If p2 later behaves incorrectly, p2f+2

generates a 〈SUSPECT〉 message to accuse p2. Replica p2 is moved to the end of the chain and
p2f+2 becomes the proxy tail, as captured in Figure 6(c). Finally, faulty replicas p2 and p3 are
moved to set B.

B Case (3): We now consider the case where faulty replica px accuses its successor
py which is actually correct. According to our re-chaining algorithm, py is moved to
the tail and px becomes the proxy tail. Note now that px does not have a successor to
accuse. Since px is a persistent failure, the only way that px can continue misbehaving
is to cause its predecessor to fail to receive the corresponding 〈ACK〉 message on time,
which would cause a 〈SUSPECT〉message from its predecessor. Also recall that the head
only handles the 〈SUSPECT〉 message sent from the replica the closest to the proxy tail
even if there might be multiple 〈SUSPECT〉 messages at the same time. Therefore, px
will be moved to the tail with another re-chaining. In this case, a faulty replica can be
moved to the tail with only two re-chainings. Of course, its predecessor might be faulty
as well and may not send any 〈SUSPECT〉 messages, in which case this predecessor will
be removed with another re-chaining according to our algorithm. An example is illus-
trated in Figure 4, where p3 is the only faulty replica. We consider the circumstance
where p3 sends the head a 〈SUSPECT〉 message to frame its successor p4 even if p4 fol-
lows the protocol. According to our re-chaining algorithm, replica p4 will be moved to
the tail, while p3 becomes the new proxy tail. However, from then on, p3 can no longer
accuse any replicas. It either follows the specification of the protocol, or chooses not
to participate in the agreement, in which case p3 will be moved to the tail. The exam-
ple illustrates another important designing rationale that an adversarial replica cannot
constantly accuse correct replicas.



B Case (4): It is possible that a faulty replica px happens to accuse a faulty replica py ,
in which case each re-chaining can move one faulty replica. This can be justified as
follows. When the head receives the 〈SUSPECT〉 message sent from px, py can be then
moved to the end of the chain while px becomes the proxy tail in one re-chaining. Since
px is a persistent failure, it will be moved to the tail with another re-chaining, just as in
Case (3). Therefore, in this case, one faulty replica can be moved to the tail with only
one re-chaining. We provide an example in Figure 6, where replicas p2 and p3 are both
faulty and p2 issues a 〈SUSPECT〉 message to accuse p3.

D Optimizations and Extensions

Replacing most signatures with MACs. As shown in previous work [21, 6, 14, 28], it
is possible to replace most signatures with MACs to reduce the computational overhead.
This is also possible for BChain. In particular, it turns out that signatures for 〈REQUEST〉,
〈ACK〉, and 〈CHECKPOINT〉 can be replaced with a vector of MACs. However, in general,
signatures on 〈CHAIN〉 messages cannot be replaced with MACs. Thus, we call this
variant Most-MAC-BChain.

In our re-chaining protocol, a replica suspects its successor if it does not receive
the 〈ACK〉 message in time. If a replica accepts and forwards a 〈CHAIN〉 message to its
successor, it is trying to convince its successor that the message is correct. Meanwhile,
the successor is able to verify if all its preceding replicas indeed honestly authenticated
themselves. This requires transferability for verification, a property that signatures en-
joys, while MACs do not.

We briefly describe an attack where a single replica can “frame” any honest replica—
a scenario that our failure detection mechanism cannot handle, e.g., when 〈CHAIN〉mes-
sages use MACs instead of signatures. Consider the following example, where there is
only one faulty replica pi, and

⇀

p i=pj and
⇀

pj=pk. The faulty replica pi simply gener-
ates a valid MAC for pj and an invalid MAC for pk. Replica pj will accept it since the
corresponding MAC is valid. It then adds its own MAC-based signature, and forwards
the message to pk. Since pk receives the message with an invalid MAC produced by pi,
it aborts. Replica pj will suspect pk according to our algorithm, while pi is the faulty
one. Generalizing the result, a faulty replica can frame any honest replica without being
suspected.

Replacing all signatures with MACs. We now discuss a variant of BChain, called
All-MAC-BChain, in which all signatures are replaced with a vector of MACs, even
for 〈CHAIN〉 messages in A. As we discussed above however, these 〈CHAIN〉 messages
must use signatures. However, if the head does not receive the 〈ACK〉 message on time,
we can simply switch to Most-MAC-BChain to start the re-chaining protocol. Once the
system regains liveness or faulty replicas have been reconfigured, we can switch back
to All-MAC-BChain. This leads to the most efficient implementation of BChain. The
performance in gracious executions will be that of All-MAC-BChain. In case of failures,
the performance will be that of Most-MAC-BChain, with most signatures replaced with
MACs and taking advantage of pipelining. The combined protocol is fundamentally
different from the ones described in [21] such as Aliph, which does not perform well in



the presence of even a single faulty replica. Note that we evaluate our BChain protocols
in Table 1 using this protocol variant.

BChain-3 with n=4. We now consider BChain-3 configured with (n=4, f=1), and
show that this allows two interesting optimizations: BChain-3 without reconfiguration
and All-MAC-BChain-3. This configuration of BChain is quite attractive, since its repli-
cation costs are reasonable for many applications, such as Google’s file system [20].

BChain-3 without reconfiguration. We show that, with a slight refinement of the re-
chaining algorithm, BChain-3 can also avoid reconfiguration: Upon receiving a 〈SUSPECT〉
from an accuser among the first two replicas in the chain, the head starts re-chaining. If
the head is the accuser, then the accused is moved to the end of the chain. Otherwise,
the accuser becomes the proxy tail, while the accused becomes the tail. It no longer
needs to run the reconfiguration algorithm. In any future runs of BChain, if the head
does not receive a correct 〈ACK〉 message, it simply switches the proxy tail (i.e., the
third replica) and the tail (i.e., the last replica). A faulty replica can be identified with at
most two re-chainings in case of synchrony. The view change algorithm is still the same
as for BChain-3, which guarantees that eventually it achieves liveness with a bounded
number of re-chainings in the partially synchronous environment.

All-MAC-BChain-3 via All MAC-based signatures. We now show that, contrary to the
general case, BChain-3 with a (n=4, f =1) configuration, can be implemented using
only MACs. The reason we can do this is that the second replica in the chain can no
longer frame its successor replica, while the behavior of the head is restricted by view
changes. Thus, a total of twelve MACs are needed for communication between replicas
and between replicas and clients. Recall also that a faulty replica can be identified with
at most two re-chainings, and no reconfiguration is required.
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Table 2. Throughput and latency improvement of BChain-3, comparing with PBFT and Zyzzyva,
when f differs. Values with parenthesis in red represent negative improvement.

Number of Compared f = 1 f = 2 f = 3

Clients Protocol throughput latency throughput latency throughput latency

20 PBFT [6] 48.61% 27.14% 36.95% 25.50% 1.69% (1.36%)

20 Zyzzyva [28] 17.65% 5.44% 2.50% 5.79% (1.93%) (2.57%)

60 PBFT [6] 41.54% 33.72% 37.12% 30.50% 36.86% 26.03%

60 Zyzzyva [28] 22.59% 26.96% 15.67% 23.85% 14.04% 15.14%

E Evaluation

E.1 Gracious Execution Evaluation

Throughput. We discuss the throughput of BChain-3 and BChain-5 with different
workloads under contention, where there are multiple clients issuing requests. We eval-
uate two configurations of BChain with f = 1: BChain-3 with n = 4 and BChain-5
with n=6, both using All-MAC-BChain. As shown in Figure 7(a), all the other proto-
cols outperform PBFT by a wide margin. With fewer than 20 clients, Zyzzyva achieves
slightly higher throughput than the rest. But as the number of clients increases, Aliph-
Chain, BChain-3, and BChain-5 gain an advantage over Zyzzyva. While BChain-3 and
Aliph-Chain have comparable performance, they both outperform BChain-5. For both
Aliph-Chain and BChain-3, peak throughput observed is 22% and 41% higher than that
of Zyzzyva and PBFT, respectively. Note that the pipelining execution of our protocol
explains why BChain-3 does not perform as well when the number of clients is small
and why it scales increasingly better as the number grows larger.

Latency. We examine and compare the latency, as depicted in Figure 7(b). As expected,
we can see that when the number of clients is smaller than 10, all the chain-based
BFT protocols experience significantly higher latency than both Zyzzyva and PBFT. As
the number of clients increases however, BChain achieves around 30% lower latency
than Zyzzyva. Indeed, BChain-3, for instance, takes 4f message exchanges to complete
a single request, which makes its latency higher in case of small number of clients.
However, as the number of clients increases, the pipeline is leveraged to compensate
for latency inflicted by the increased number of exchanges.

Scalability. We tested the performance of BChain-3 varying the maximum number of
faulty replica, as summarized in Table 2, with both 20 and 60 clients. We observe that,
the advantage of BChain-3 over other protocols decreases as f grows. When f grows to
3 and the number of clients is 20, BChain achieves lower performance than both PBFT
and Zyzzyva. However, when the number of clients is large, BChain still achieves better
performance. In contrast to many other BFT protocols with a constant number of one-
way message exchanges in the critical path (c.f. Table 1), the number of exchanges in
BChain-3 is proportional to f . In BChain-3, a client needs to wait for 2f +2 exchanges
and the head needs to wait for 4f exchanges to commit a request. This intuitively ex-
plains why the performance benefits of BChain-3 becomes smaller as f increases. As



the pipeline is saturated with clients requests and large request batching is used, BChain
can achieve better peak performance.

E.2 A BFT Network File System
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Fig. 8. Bonnie++ Benchmark. R/c, R/b, W/c, and W/b stand for per-character file reading, block
file reading, per-character file writing, and block file writing, respectively.

This section describes our evaluation of a BFT-NFS service implemented using
PBFT [6], Zyzzyva [28], and BChain-3, respectively. The BFT-NFS service exports
a file system, which can then be mounted on a client machine. Upon receiving client
requests, the replication library and the NFS daemon is called to reach agreement on
the order in which to process client requests. Once processing is done, replies are sent
to clients. The NFS daemon is implemented using a fixed-size memory-mapped file.

We use the Bonnie++ benchmark [12] to compare our three implementations with
NFS-std, an unreplicated NFS V3 implementation, using an I/O intensive workload. We
first evaluate the performance on sequential input (including per-character and block file
reading) and sequential output (including per-character and block file writing). Figure 8
shows that the performance of sequential input for all three implementations only de-
grades the performance by less than 5% w.r.t. NFS-std. However, for the write opera-
tions, PBFT, Zyzzyva, and BChain-3, respectively, achieves in average of 35%, 20%,
and 15% lower processing speed than NFD-std.

In addition, we also evaluate the Bonnie++ benchmark with the following directory
operations (DirOps): (1) create files in numeric order; (2) stat() files in the same order;
(3) delete them in the same order; (4) create files in an order that will appear random to
the file system; (5) stat() random files; (6) delete the files in random order. We measure
the average latency achieved by the clients while up to 20 clients run the benchmark
concurrently. As shown in Table 3, the latency achieved by BChain-3 is 1.10% lower
than NFS-std, in contrast to BFS and Zyzzyva.

Finally, we evaluate the performance using the Bonnie++ benchmark when a failure
occurs at time zero, as detailed in Figure 9. The bar chart also includes data points for
the non-faulty case. The results shows that BChain can perform well even with failures,
and is better than the other protocols for this benchmark.
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Table 3. NFS DirOps evaluation in fault-free cases.

BChain-3 Zyzzyva BFS NFS-std
41.66s(1.10%) 42.47s(2.99%) 43.04s(4.27%) 41.20s

We have shown in each case that every two re-chainings can move at least one faulty
replica to the tail of the chain. With a similar argument, in the presence of at most f
failures, as long as the first replica moved to set B can be reconfigured within the period
of f re-chainings, there are no faulty replicas in set A.

F Further Related Work

Failure detectors were introduced by Chandra and Toueg [9] for solving consensus
problems in the presence of crash failures. For each replica, failure detector outputs the
identities of each replica that it detects to have crashed. Quiet process and muteness de-
tector [31, 15, 16, 4] extend failure detectors to address Byzantine failures and use them
to solve consensus problem. Byzantine failures, in contrast to crash failures, are not
context-free, so it is not possible to define and design failure detectors independently
of the underlying protocols [16]. Therefore, for instance, consensus protocols from a
muteness detector [15] have to handle Byzantine failures at the algorithmic level.

Fault diagnosis [33, 2, 34, 36, 41, 37, 25] aims to identify faulty replicas. The basic
idea is that a proof of misbehavior for a is collected by executing a modified BFT pro-
tocol. However, it usually requires several rounds of protocols to collect a huge volume
of exchanged messages to provide such proof. An adversary can render the system even
less practical by intermittently following and violating the protocol specification. Simi-
larly, PeerReview [22] can detect and deter failures by exploiting accountability. It also
uses a “sufficient” number of witnesses to discover faulty ones. BChain fault diagno-
sis, though not perfectly accurate, does not have the above-mentioned properties. No
evidence is required to be regularly collected, and no additional latency is induced by
intermittent adversaries. We note that Hirt, Maurer, and Przydatek [24] used the idea
of the “imperfect fault detection” to achieve general multi-party computation in syn-
chronous environments, but their techniques are very different from ours.


