
1

Poligraph: Intrusion-Tolerant and Distributed
Fake News Detection System

Guohou Shan, Boxin Zhao, James R. Clavin, Haibin Zhang, and Sisi Duan

F

Abstract—We present Poligraph, an intrusion-tolerant and decentral-
ized fake news detection system. Poligraph aims to address architec-
tural, system, technical, and social challenges of building a practical,
long-term fake news detection platform.

We first conduct a case study for fake news detection at authors’ in-
stitute, showing that machine learning-based reviews are less accurate
but timely, while human reviews, in particular, experts reviews, are more
accurate but time-consuming. This justifies the need for combining both
approaches.

At the core of Poligraph is two-layer consensus allowing seamlessly
combining machine learning techniques and human expert determi-
nation. We construct the two-layer consensus using Byzantine fault-
tolerant (BFT) and asynchronous threshold common coin protocols. We
prove the correctness of our system in terms of conventional definitions
of security in distributed systems (agreement, total order, and liveness)
as well as new review validity (capturing the accuracy of news reviews).
We also provide theoretical foundations on parameter selection for our
system.

We implement Poligraph and evaluate its performance on Ama-
zon EC2 using a variety of news from online publications and social
media. We demonstrate Poligraph achieves throughput of more than
5,000 transactions per second and latency as low as 0.05 second. The
throughput of Poligraph is only marginally (4%–7%) slower than that of
an unreplicated, single-server implementation. In addition, we conduct
a real-world case study for the review of fake and real news among
both experts and non-experts, which validates the practicality of our
approach.

Index Terms—reliability, fault tolerance, machine learning

1 INTRODUCTION

The use of words and semantics to share information in
news media and political discourse has considerable power
in influencing people’s beliefs and opinions [1]. Fake news

• G. Shan is with Department of Management Information System, Temple
University. Co-first author.
E-mail: guohou.shan@temple.edu

• B. Zhao is with Institute for Advanced Study, Tsinghua University. Co-
first author.

• J. Clavin is with Department of Information Systems, University of
Maryland, Baltimore County.

• H. Zhang is with Shandong Institute of Blockchain. Corr esponding
author.
Email: bchainzhang@aliyun.com

• S. Duan is with Institute for Advanced Study and Beijing National
Research Center for Information Science and Technology, Tsinghua Uni-
versity. Corresponding author.
Email: duansisi@mail.tsinghua.edu.cn

is defined as intentionally fabricated information that mim-
ics news media content in form but not in organizational
process or intent, lacking the news media’s editorial norms
and processes for ensuring the accuracy and credibility of
information [2]. The extensive dissemination of fake news
has the potential to significantly impact both the individual
and society. It is misleading and potentially harmful to read-
ers when news is disconnected from its original source and
context [3]. Unfortunately, a person’s ability to distinguish
truth from deception has just 54% accuracy on average, or
slightly better than random guessing [4]. The majority of
U.S. adults (62%) get their news from social media [5], which
is the main source of fake news. Currently, fake news about
COVID-19 spreads fast and becomes dangerous on social
media platforms. Being able to detect fake news has become
more important than ever before.

Existing studies in fake news detection can be classified
into four categories: experimental studies, research on fake
news modeling, machine learning (ML), and deep learning
(DL) based detection. In experimental studies, researchers
recruit participants to verify the authenticity of the news
and assess whether their opinions or beliefs will be influ-
enced by fake news [6]–[8]. Fake news modeling focuses
on constructing fake news detection models based on the
genesis, evolution, and propagation of a fake news article,
by cataloging and tracing its characteristics over time [9],
[10]. By extending and utilizing various news-related fea-
tures, researchers have built and trained different machine
learning models to predict the probability that a news article
is fake, through a variety of classical data science techniques,
i.e., classification, and regression [11], [12]. Besides con-
ventional ML approaches, deep learning-based approaches
have recently also been studied for fake news detection [13]–
[23]. ML based models leverage algorithms such as logistic
regression (LR), support vector machine (SVM), and XG-
Boost to classify news based on news textual and/or visual
features while DL based models leverage neural networks
like CNN, LSTM, and adversarial network to identify fake
news based on news textual and/or visual information.
The majority of the works, however, are ML-based, partly
because ML approaches usually achieve lower latency (i.e.,
and therefore higher throughput from system perspective).
Furthermore, several companies are also looking for system-
atic and publicly available solutions for fake news detection.
For instance, Facebook is developing its own cryptocurrency
solutions with the potential to eliminate fake news and

2

bots [24].
Despite an impressive amount of work on fake news

detection techniques as described above, and given that some
non-dedicated services that are run by a single provider
do exist (e.g., Amazon Mechanical Turk [25]), to the best
of our knowledge, there is no public and intrusion-tolerant
system for fake news detection ensuring reliability, security,
and accuracy.

Besides the basic requirements of being decentralized
and defending against arbitrary (Byzantine) failures and
malicious attacks, we identify the challenges and require-
ments of building an intrusion-tolerant fake news detection
system.

• The need for ML and human review integration. In our
work, we focus on ML based approaches. Compared to
DL approaches, ML approaches have lower latency and
thus incur a higher throughput in the system we build.
Furthermore, most existing approaches for fake news
detection are ML based ones. The fake news modeling
and ML techniques have limitations that are both general
to data science and specific to this domain. As is the case
with any ML technique, the results depend on the quality
of the training and holdout data, and the overall size of
the data set being fed into the ML algorithm. Even for
those ML fake news algorithms which have been built
upon a robust data set, there remains a challenge: any
ML result must be reviewed by a human, preferably a
specialist in the field, to validate the results. For instance,
social media such as Facebook has a long history of using
ML to detect fake news and spam. The ML approaches,
however, are shown to have high inaccuracy that can
only be addressed by human moderators [30].
• Reproducibility. It is desirable to guarantee that news

prediction is deterministic and can be verified by anyone
over time. Many existing ML systems use a proprietary
data set and therefore the prediction is not reproducible.
Even if the data set is open-source, one would have to
trust the algorithms and the system running the algo-
rithms. Therefore, building a reliable and secure system
for an ML system can enhance the reproducibility of the
ML model and the data set.
• On-line vs. off-line fake news detection. Providing real

time, on-line prediction is needed for many applications,
but the results may be less accurate. An off-line system,
however, may provide results that are less responsive but
more accurate. While it is desirable to provide efficient
trade-offs, no such mechanism exists.
• Practical state transfer for ML. While we know how to

maintain and transfer state in replicated systems, it is not
clear how to deal with state transfer for ML efficiently.
The ML state is complex, and a lightweight solution is
needed.
• Toward an evolving, long-term platform. The accuracy

of a fake news detection system may be improved as
labeled data grows. In addition, the ML needs to be
re-trained periodically for better accuracy. This poses
additional requirements and challenges of building such
a system.

Our approach and our contribution. We have conducted a
news review of both real and fake university news among

a group of students and news staff at UMBC. We show
that machine learning based reviews are less accurate but
timely; we also show that with certain expertise in a certain
field, collective reviews among a group of human are able
to achieve a high enough accuracy to justify the authenticity
of the news. The case study bolsters the intuitive viewpoint
that one should combine both machine learning techniques
and expert review determination to achieve the best of both
worlds.

We design and implement Poligraph, a Byzantine fault-
tolerant (BFT) distributed system for fake news detection
satisfying all system requirements mentioned above. Poli-
graph ensures integrity and availability, defending against
malicious (Byzantine) news feed providers, servers, and
human reviewers. Poligraph has a novel system architecture
based on a new consensus primitive, two-layer consensus,
which can combine the news authenticity results from ML
models and human reviewers. We show that two-layer con-
sensus can be efficiently built from BFT and asynchronous
threshold PRF protocols [31]. We prove the correctness of
our protocol and show how to tune parameters to allow
parallel reviews securely and efficiently.

A comparison with existing approaches is shown in
Table 1. In particular, as the data set maintained by our
system grows, its anthropological, forensic, analytic, and
data science value increases. In other words, the motivation
of our work is not to study the fake news problem itself
or enhance the ML approach, but to provide a secure and
distributed approach, which can be used as a platform to
maintain a growing list of data set. The data set over time
will enhance the ML performance.

We evaluate the performance of Poligraph on Amazon
EC2 using both political and entertainment news from news
websites (e.g., Washington Post) and social media platforms
(e.g., Twitter) with news labels from PolitiFact.com and
GossipCop.com. Via extensive evaluation of Poligraph, we
show it achieves throughput of more than 5,000 transactions
per second and has latency as low as 0.05 second. The
throughput of Poligraph is only marginally (4%–7%) slower
than that of an unreplicated, single-server implementation.

2 RELATED WORK

Fake News Detection. In the past two decades, fake news
detection has been investigated extensively [?], [6], [9], [11],
[18]–[23], [32]–[34]. We classify the past studies into four cat-
egories: experimental studies, fake news modeling, ML, and
DL based detection. (1) Experimental studies utilize behav-
ioral experiments to reveal the cognitive aspects of people
towards fake news detection. For example, Pennycook et al.
adopted Amazon’s Mechanical Turk (AMT) [25] to conduct
their experiments on whether prior fake news exposure will
affect people’s perceived accuracy of fake news. In their
research, they confirmed that prior exposure to fake news
can increase subsequent perceptions. Specifically, people are
more likely to believe fake news articles if they saw those ar-
ticles before elsewhere, and were even more likely to believe
if they saw the article on multiple occasions [6]. (2) Fake news
modeling approaches focus on building fake news detection
models from news characteristics. For instance, Jin et al.
constructed a hierarchical propagation model, consisting of

3

fake news detection system decentralized Byzantine failure human review ML reproducibility growing data set
ML-based online detection [26], [27] # # # # #
ML detection models [13], [14], [17] # # # # #

Human determination [28], [29] # # # # #
Amazon Mechanical Turk [25] # # # # #

Poligraph (this work)

Table 1: Comparison of fake news detection systems. #Not supported Supported.

event, sub-event, and message networks, to verify the news
credibility on two data sets from Sina Weibo, a popular
micro-blogging site. After linking the semantic and social
associations of a news event, the model achieves higher
accuracy and F1-score [35] than baseline methods [34]. (3)
Machine learning based methods apply different models to
enhance the accuracy of fake news detection. Several ML
models combine the features from previous studies and
propose new features to improve the performance of fake
news detection [?], [1], [36]. For instance, Jin et al. pro-
posed five new image visual features and seven new image
statistical features extracted from news articles to detect
fake news. In their experiments, they used SVM, Logistic
Regression, KStar, and Random Forest models, utilizing
their newly identified features with baseline features from
previous studies. They applied their models on the Sina
Weibo data set and found their selected features improve
fake news detection performance [?]. (4) Recently, deep
learning based approaches have also been studied for fake
news detection [13]–[23]. Specifically, various deep learning
models such as CNN, LSTM, Bi-LSTM, adversarial neural
network, and even transfer learning are used to identify fake
news. For example, Wang et al. designed an event adversar-
ial neural networks by considering both news textual and
visual information, where both text-CNN and image-CNN
(e.g., VGG-19) are used to extract the textual and visual
feature representation [18].

In our work, we integrate ML-based methods and exper-
imental studies (human reviews to be specific) and provide
a generic system architecture to build such a system. Com-
pared to DL-based approaches, we study ML based ones in
our work, mainly because ML-based approaches have lower
latency and the majority of the works are ML-based ones.
Our system architecture, however, is generic so one could
simply replace ML-based approaches with DL-based ones.
Byzantine Fault Tolerance (BFT). The goal of BFT consen-
sus is that the correct replicas reach a consensus on the order
of client requests. Beginning with PBFT [37], an impressive
number of efficient BFT protocols are proposed (e.g., [38]–
[47]). Numerous efforts have been made to improve the per-
formance of BFT using different approaches [41], [48]–[56].
While most of them work in partially synchronous environ-
ments to guarantee liveness, there exist efficient protocols
working in completely asynchronous environments [57],
[58]. Our two-layer consensus is general and can be based
on any of these BFT protocols.
Blockchains. Blockchains can be categorized into two types:
permissionless blockchains and permissioned blockchains.
A permissionless blockchain allows dynamic membership
using Sybil attack resistant mechanisms [59]–[61]. In con-
trast, permissioned blockchains require that servers know
the identities of each other but do not have to trust each

other [62]–[65]. BFT is deemed as the model for permis-
sioned blockchains [65] and can also be used to improve
permissionless blockchains (hybrid blockchains).

Our two-layer consensus divides the roles of nodes into
consensus nodes (replicas) and reviewer nodes. The idea of
separating roles of nodes originates from early consensus
works such as Lamport’s Paxos crash fault-tolerant consen-
sus [66]. Several previous efforts also separate the roles in
the BFT for various purposes [54], [67]–[71].

Group Min Max Median Mean Std
Group 1 0 10 7 6.30 2.53
Group 2 10 10 10 10 0

ML 5 9 6 6.27 1.19

Table 2: Review scores for both human groups and ML.

3 THE NEED FOR COMBINING MACHINE LEARN-
ING AND EXPERT REVIEWS: A CASE STUDY

Intuitively, one would need machine learning for quick
reviews and need human experts for more accurate and
detailed new reviews. To justify the need for combining ML
techniques and human expert reviews, we have conducted
a news review at the authors’ institute (UMBC). We provide
interesting results, bolstering the viewpoint that a combi-
nation of ML and expert reviews achieve the best of both
worlds.

Specifically, we crawled 50 university news articles from
the UMBC’s news website. We then use Grover [26] to gen-
erate 50 fake news. The 100 news forms a pool of university
news.

We conduct news reviews among two groups of people.
Group 1 includes only graduate students. Group 2 includes
staff from the communications team at UMBC and some of
them may have reviewed or edited some news in our news
pool. We intentionally chose the two groups of reviewers for
our study. For group 1, we aim to validate the conclusion
where for news that is not subjective (e.g., university news
is usually either fake or authentic), experts can well validate
the authenticity of the news. Second, for group 2, we aim to
study whether, with some background knowledge, a non-
expert can justify the authenticity of the news with decent
accuracy. The study for group 2 can also be used to validate
our proposed architecture as discussed in great detail later.

For each participant, we randomly select 10 news out of
the 100 news pool to review. We have collected 30 valid sets
of results. In addition, we also train our LR model using the
training data set from PolitiFact.com and use it to predict the
authenticity of the 100 news. For the news word embedding,
we use doc2vec google news corpus [72] to extract the
news features. We include detailed discussion about the
implementation of ML model in Sec. 8. Specifically, each
time we randomly select 10 samples to obtain the ML results

4

Approach Accuracy Precision Recall F1-score Latency
Non-expert review (Group 1) 0.625 0.663 0.529 0.551 14 min

Expert review (Group 2) 1 1 1 1 3.3 min
Human review (combined) 0.652 0.709 0.580 0.601 7min

ML review 0.637 0.688 0.784 0.732 6.5s
T-stat 2.756** 3.534*** -4.891*** -0.931 NA

Note: *< 0.05; **< 0.01; ***< 0.001.
Table 3: Review results of human reviewers and ML reviews.

and we run the same test 30 times. This matches the test we
have done for human reviews. We have also conducted a t-
test for comparing the average performance between human
and ML reviews. The T-stat is calculated as follows:

T − stat =
X̄1 − X̄2√

1/N(S1
2 + S2

2)
(1)

where X̄1, X̄2, S1
2, and S2

2 represent the average per-
formance (e.g., accuracy) and standard deviations among
two samples (human and machine learning), respectively.
N reveals the sample size, which is 30 in our situation.

We first report the score for the human review for both
groups and doc2vec reviews in Table 2. The score refers
to the number of correct answers in each experiment. The
results for group 2 are highly accurate, in part because the
communications team staff are very familiar with the news
of the institute. In comparison, the results for students in
group 1 are less accurate. The median and mean, however,
are well above average. Although none of the student partic-
ipants is majoring in media or news, the results have shown
that, with some familiarity of the news content, people’s
justification is well above the 54% random guessing for a
general audience [4]. In comparison, non-expert reviews are
slightly more accurate than ML reviews and less accurate
than expert reviews.

We also compare accuracy, precision, recall, f1-score, and
evaluation time for both human reviews and ML results,
where the first four metrics as commonly used automatic
fake news detection performance metrics [11], [12], [36].
Specifically, accuracy is the percentage of correctly detected
fake and true news among the total number of news exam-
ined; precision is defined as the percentage of total news
detected as fake that is indeed fake ones; recall is the ratio
of fake news that is correctly identified; and F1-score is a
harmonic mean of precision and recall.

As shown in Table 3, human reviews in general achieve
much higher performance for all the criteria we have used.
The major drawback is the long review latency. Indeed,
humans take on average 7 minutes to review each article,
which is significantly higher than a few seconds for ML
reviews. This is unavoidable in practice since all the data
sets used in supervised ML rely on humans to review them.
Among the human reviews, the results by experts (group 2)
are consistently higher than that by non-experts (group 1),
both of which are consistently better than ML.

To conclude, our results have validated the need for a
combination of ML and expert reviews. Specifically, the ML
results are less accurate but more timely. Human reviews,
in particular, expert reviews, are more accurate but might
be time-consuming. With little to median expertise, human
results can be used as labels to finalize the results of news.

4 SYSTEM AND THREAT MODEL

We consider a generalized distributed review system that is
not restricted to fake news detection. The system consists
of clients, n servers (replicas), and N reviewers. Clients submit
requests to the system and expect results for their requests.
The result for a request can be a temporary result or a
final result. A temporary result is an initial assessment of
a request by replicas according to the current system state,
st. A final result combines the temporary result with reviews
collected from reviewers. A client may first receive a tempo-
rary result and later receive a final result, or receive a final
result directly if the request has already been reviewed by
reviewers. In our work, the duration between the temporary
result and the final result is determined by the time for
human reviews.

Each time a new request that has not been reviewed is
submitted, a set of I reviewers will be selected to contribute
their reviews for the request. Each reviewer provides a
binary result with certain data payload. The selected set is
called a reviewer set. Let R denote the number of required
matching reviews. If R matching reviews are received by
servers, the servers combine the temporary server-generated
result with the human reviews to form a final result for that
request. Client requests and reviews are collectively called
transactions. Clients, servers, and reviewers are collectively
called nodes.

Nodes can fail arbitrarily (Byzantine failures). We consider
a strong adversary which can coordinate Byzantine nodes.
We assume f out of n servers may be Byzantine and we
require n > 3f . We assume F out of N reviewers may be
faulty. For simplicity and correctness, we require N > 2F in
this paper. Namely, among the N reviewers, the majority
of them (correct reviewers) will return the same binary
review result (denoting if a request is authentic) for the
same request. The corresponding review is referred to as a
correct review. Faulty reviewers will either be non-responsive
or generate biased (incorrect) reviews.

We assume asynchronous environments, making no tim-
ing assumptions on message processing or transmission
delays. In some cases, the system works under partial syn-
chrony [73], where synchrony holds after some unknown
global stabilization time, but the bounds on communication
and processing delays are themselves unknown.
Goals. Our system has the following goals.

• Agreement. If any correct replica delivers a transaction
m, then every correct replica delivers m.
• Total Order. If a correct replica has delivered transactions
m1,m2, · · · , ms and another correct replica has delivered
m′1,m

′
2, · · · , m′s′ , then mi = m′i for 1 ≤ i ≤ min(s, s′).

• Liveness-1. If a transactionm is submitted to n−f correct
replicas, then all correct replicas will eventually deliver

5

m.
• Liveness-2: Temporary result. For each new request that

is sent by a client and has never been processed and
finalized by replicas, the client will eventually receive a
temporary result from replicas.
• Liveness-3: Final result. The client will eventually re-

ceive a final result from replicas for a request.
• Validity. The final result is guaranteed to be correct in

spite of faulty (non-responsive and biased) reviewers.

4.1 Fake News Detection
We now restrict the review system to the case of fake news
detection. In this system, clients submit news to the servers.
Servers run ML models to generate a temporary assessment
of whether the news is fake or authentic. Reviewers are
experts such as credentialed journalists.
Machine learning models. In this work we use super-
vised machine learning models. Compared to deep learning
models, machine learning models are faster and have low
latency in detecting fake news. Among the machine learning
models, LR, SVM, random forest, naive bayes, and XGBoost
are commonly used. Among them, LR and SVM perform
the best with the lowest latency in general, as pointed out
by prior works [74]. Thus, we focus on LR as the machine
learning model. Each model can be initiated with a number
of parameters a1, a2, · · · , ak. For example, for a LR model,
the input parameters be penalty (the norm used in the
penalization), tol (tolerance for stopping criteria), etc.

The parameters determine the ML state. Each machine
learning model consists of two phases: training and predic-
tion. The training phase uses a labeled data set to train the ML
model and forms a ML state. The prediction phase utilizes
trained ML state to make predictions (results) for unlabeled
data (news verification requests from clients).

5 BUILDING BLOCKS

BFT. We use BFT state machine replication (SMR) protocols,
where f out of n replicas may fail arbitrarily (Byzantine
failures) and a computationally bounded adversary can
coordinate faulty replicas. A replica delivers transactions sub-
mitted by a client. A client can compute a final result to its
submitted transaction from the responses it receives from
replicas. Correctness of a secure BFT protocol is specified as
follows.
• Agreement: If any correct replica delivers a transaction
m, then every correct replica delivers m.
• Total Order: If a correct replica has deliveredm1,m2, · · · ,
ms and another correct replica has delivered m′1,m

′
2, · · · ,

m′s′ , then mi = m′i for 1 ≤ i ≤ min(s, s′).
• Liveness: If a transaction m is submitted to n− f correct

replicas, then all correct replicas will eventually deliver
m.
BFT is a key building block for our system. Both efficient

asynchronous and partially synchronous BFT protocols ex-
ist. If the underlying BFT protocol is asynchronous (resp.,
partially asynchronous), our protocols are asynchronous
(resp., partially asynchronous).
Threshold PRF. We review threshold PRF (e.g., [31]), where
a public key is associated with the system and a PRF key is

Setup. Let G be a group of prime order q with
generator g. Let Zq be the additive group, integers
modulo a prime q. Let l be a security parameter. Let
m ∈ {0, 1}∗. Define the following three hash functions:
H : {0, 1}∗ → G, H ′ : G6 → Zq , H

′′
: G→ {0, 1}l.

• FGen(1|q|): Choose random points d0, · · · , dt−1
$← Zq

and define a polynomial F (X) =
∑t−1
j=0 djX

j ∈ Zq[X].
For i ∈ [1..n], set xi = F (i) ∈ Zq and hi = gxi .
Set x = F (0) and h = h0 = gx. Set pk = (G, g, h),
vk = (pk, h1, · · · , hn), and ski = (pk, xi) for i ∈ [1..n].
Return (pk, vk, sk).

• Eva(pk,m, ski): Compute ĥ = H(m), ĥi = ĥxi .
Choose at random s

$← Zq , compute d = gs, d̂ = ĥs,
c = H ′(g, hi, d, ĥ, ĥi, d̂), and z = s + xic. Return
yi = (ĥi, c, z).
• Vrf(vk,m, yi): Given yi = (ĥi, c, z), check if c =

H ′(g, hi, d, ĥ, ĥi, d̂), where d = gz/hci and d̂ = ĥz/ĥi
c
.

If the test holds, return b = 1. Otherwise, return b = 0.

• FCom(vk,m, {yj}): Given t valid PRF shares, run
the Lagrange Interpolation in the Exponent on {yj} to
obtain y′ = H(m)x. Return y = H

′′
(y′).

Figure 1: CKS threshold PRF (FGen, Eva, Vrf, FCom) for a
function F : {0, 1}∗ → {0, 1}l.

shared among all the servers. A (t, n) threshold PRF scheme
Π for a function F consists of the following algorithms
(FGen, Eva, Vrf, FCom).

• A probabilistic key generation algorithm FGen takes
as input a security parameter l, the number n of to-
tal servers, and threshold parameter t, and outputs
(pk, vk, sk), where pk is the public key, vk is the veri-
fication key, and sk = (sk1, · · · , skn) is a list of private
keys.
• A PRF share evaluation algorithm Eva takes a public key
pk, a PRF input m, and a private key ski, and outputs a
PRF share yi.
• A deterministic share verification algorithm Vrf takes as

input the verification key vk, a PRF input m, and a PRF
share yi, and outputs b ∈ {0, 1}.
• A deterministic combining algorithm FCom takes as in-

put the verification key vk, a PRF input m, and a set of t
valid PRF shares, and outputs a PRF value y.

We require the threshold PRF value to be unpredictable
against an adversary that controls up to t − 1 servers. We
also require the threshold PRF to be robust in the sense the
combined PRF value for m is equal to F(m).

We use the CKS threshold PRF [31], as described
in Figure 1. The protocol is non-interactive, working in asyn-
chronous environments. The CKS threshold PRF is secure
under the computational Diffie-Hellman (CDH) assumption
in the random oracle model.

6

6 POLIGRAPH: INTRUSION-TOLERANT FAKE
NEWS DETECTION

6.1 Motivation and Pitfalls

We build a fake news detection system, Poligraph, combin-
ing ML servers and human expert determination. A client
may submit news to the system and expect a result repre-
senting whether the news is fake. Servers run supervised
ML models to generate a temporary assessment of whether
the news is fake, along with a confidence score. Meanwhile,
servers also invite reviewers, such as credentialed journal-
ists, to review the news. If matching reviews from a majority
of reviewers are received, the result for the news is finalized
and will be sent to the client. The final result is also viewed
as a label of the news item. Thus, the labeled data set
maintained by the system can grow over time and can be
used to re-train ML models and enhance the accuracy of the
ML results in the long run.

Collecting reviews from reviewers, however, is
tricky.

• First, different from computer nodes, reviewers can be
(arbitrarily) slow: reviewers may not be responsive and
the review process itself may take time. It is difficult to set
up appropriate timers or rely on any timing assumptions.
A system working in completely asynchronous environ-
ments is desirable.
• Second, one cannot ask all reviewers to provide reviews

for every news feed. This is prohibitively expensive and
slow. We can, however, allow selecting subsets of review-
ers to perform parallel reviews for individual news feeds.
This again poses various challenges: How can we select
subsets of reviewers securely and fairly? What if a subset
of reviewers happens to have a malicious majority?

Attempts. Our first attempt is to directly use BFT (e.g.,
PBFT [37]) or blockchain smart contracts (e.g., Chaincode in
Hyperledger Fabric [75]). In this approach, we use a group
of servers to run a BFT or blockchain system and treat both
clients and reviewers as BFT or blockchain clients.

One may use a specific server, e.g., the leader of the BFT
or blockchain system, to select subsets of reviewers. How-
ever, this approach does not guarantee the accuracy, because
using the leader to select reviewers easily leads to biased
results if a faulty leader colludes with certain reviewers.
Ideally, reviewers for a news feed should be uniformly cho-
sen at random among all reviewers with specific expertise
to ensure fairness and accuracy of review results. Second,
the approach impedes liveness. For instance, a faulty leader
may simply choose not to send requests to reviewers.

To solve the issue, we use an asynchronous common coin
protocol to unbiasedly select reviewer sets. In particular, all
replicas jointly and asynchronously generate an uniformly
random number corresponding to a random reviewer set.
Moreover, each reviewer set should be bound to a specific
news feed.

Existing blockchain systems, however, cannot be directly
used for our purpose because they cannot efficiently sup-
port the data structures we need. Poligraph requires an
integration of ML and BFT consensus, involving multiple
data formats, e.g., database tables, in-memory hash maps,
ML model initialization parameters. These formats are not

well supported by existing smart contract and blockchain
platforms. Additionally, Poligraph uses threshold PRF to
instantiate an asynchronous common coin protocol. Exist-
ing blockchains do not support deploying such distributed
cryptographic protocols using smart contracts. Therefore, a
new system needs to be built.

There is another pitfall. Even if we have a way of fairly
selecting subsets of reviewers and even if we can guarantee
a majority of reviewers in a subset is correct, there are still
potential inconsistencies among the servers. Suppose we
have an intuitive protocol requiring servers to take majority
votes on reviews. It is possible that replicas agree on the
decision (whether or not news is fake) but fail to agree on
the human reviews: some correct replicas receive reviews
from a subset of reviewers, while some other correct replicas
have received reviews from a different subset of reviewers.
As these human reviews are used to run ML prediction
and further used to perform periodical ML re-training,
inconsistencies would occur among correct replicas.
Our approach at a high level. We present the concept of
two-layer consensus, a new primitive for BFT consisting
of a BFT server layer and a review layer. The BFT layer
maintains the availability of the service and runs ML models
to generate a temporary assessment of the news. The BFT
layer also interacts with the review layer and integrates the
results. Two-layer consensus provides a two-step validation
for the data in client requests, integrates machine review
results and expert review results, and enables online vs.
offline response trade-offs. We use BFT and asynchronous
common coin protocols to realize two-layer consensus and
support parallel reviews. We further tune the parameters
between the performance and accuracy of the final result.
To solve the inconsistency problem, we treat reviews as
transactions and explicitly order review transactions. In this
way, the exact same reviews should be included to ensure
that replicas have the same state and replicas have the same
final result integrated from the reviews.

6.2 Poligraph: A Two-Layer Consensus Protocol for
Fake News Detection
We present Poligraph, a distributed system that relies on
two-layer consensus to provide an intrusion-tolerant, reli-
able, and tamper-proof service for fake news detection.

We believe that abstractly, the two-layer consensus is of
separate interest and can be applied to other domains as
well. In the rest of this section, we present the workflow
of two-layer consensus for fake news detection. The work-
flow, however, is generic enough to be easily used in other
domains.
Replica state. In our two-layer consensus protocol, there
are three types of data: transactions (client requests and
reviews), temporary results (client requests with pending
finalized review results), and final results. The three types
of data can be mapped to three tables: a transaction table, a
temporary state table, and a final state table. The transaction
table and final state table are append-only, and new entries
will be appended to the end of the tables. The temporary
results are put in the temporary state table, the entries of
which will later be moved to the final state table.

Figure 2 depicts the workflow of the protocol. The BFT
layer runs a BFT protocol and assigns sequence numbers to

7

Client

1

2

News
Feed 2

Temporary
or final

assessment
4/5 Review

Collection
6 Final Result

Replicas Reviewers

1 4

6

3 Generate
Common

Coin

5
Common

coin

BFT
Protocol

ML Model
7

Controller

3

ML re-training

Figure 2: The Poligraph workflow.

both client requests and reviews. Poligraph can be built on
top of any BFT protocol. If the BFT protocol is asynchronous
(resp., partially asynchronous), our two-layer consensus
protocol is asynchronous (resp., partially asynchronous).
For instance, if we use HoneyBadgerBFT [57], BEAT [58],
our protocol is asynchronous; if we use PBFT [37], our
protocol works in partially synchronous environments.
System setup. We set up an (f+1, n) threshold PRF scheme,
Π = (FGen, Eva, Vrf, FCom), where a public key pk and
verification keys vk are associated with the system, while
a secret key is shared among all servers, with a server pi
having a key ski for i ∈ [1..n]. The keys can be generated
either by a trusted dealer or running a distributed key
generation algorithm [76], [77]. Let h(·) be a hash function.
Step 1: Client submits a request m to the replicas. The
client sends a request of the form 〈REQUEST, cid, ts, o〉 to the
servers, where cid is the client id, ts is the timestamp, and o
is the data payload of a news feed.
Step 2: Replicas run the BFT protocol to assign a sequence
number seq to the request m. After a replica delivers the
request, the request is appended to the transaction table.

The replicas look up the final state table to identify if
h(o) exists, i.e., whether o has been stored in the final state
table.
• If the data payload o already exists in the final state table,

replicas directly send a final result to the client. In this
case, while the request is new, the data payload for this
request has been previously reviewed and finalized. The
final result can be directly obtained from the final state
table and sent to the client. Replicas complete the request.
• If the data payload o has not been reviewed before, each

replica runs its ML model to obtain a temporary result of
the news in the format of 〈TEMP, ev, cl〉. The value ev is a
boolean result representing if the news is authentic. The
value cl is the confidence level, where 0 < cl < 1. After
running the ML model, the replica sends the temporary
result to the client and then continues to proceed to the
reviewer selection procedures (step 3).

Step 3: Replicas agree on a random reviewer set.
• Each replica pi runs Eva on (m, seq) to generate a thresh-

old PRF share yi and broadcasts 〈BEB, seq, yi〉 to all other
replicas.
• Upon receiving f + 1 valid PRF shares of the form

(m, seq, yj) from replica pj , replica pi runs FCom on
(vk, (m, seq), {yj}) and obtains a random output denot-
ing a reviewer set of I invited reviewers.

Step 4/5: Replicas collect reviews from the reviewers.

• Each replica pi sends the review request
〈REVIEW-REQUEST, seq, o〉 to the reviewers in the
reviewer set. We remove the identity information cid from
the request m and reviewer set I and only forward the data
payload. This maintains decoupling between clients and
reviewers in time and space, providing scalability and
(weak) anonymity.
• Upon receiving f + 1 matching replica review requests

with the same (seq, o), a reviewer reviews the payload
request and sends replicas a review 〈REVIEW, seq, b, rev〉,
where b denotes a binary review result, and rev is a
detailed review.

Step 6: Replicas integrate reviews and send a final result
to the client. A review of the form 〈REVIEW, seq, b, rev〉
is ordered as a transaction by replicas and appended to
the transaction table. A replica begins integrating reviews
after collecting exactly R reviews with the same b, where
R is a system threshold parameter that will be specified
shortly in Sec. 6.3. The entry in the temporary state table
is removed. A new entry with the integrated final result is
appended to the final state table. After collecting R reviews,
any other reviews for m will not be stored or processed. The
corresponding entry is then removed from the temporary
state table, and the integrated final result is then sent to the
client. Correspondingly, the client accepts the result after
receiving f + 1 matching replies.

Now it becomes clear why we need to order reviews. In
our protocol, the integrated final result for a client request
takes as input R reviews of the form (b, rev). If we do not
order reviews, it is possible that replicas agree on the same
indicator bit but fail to agree on the reviews. Therefore,
the exactly same reviews should be included to ensure that
replicas have the same state and the same final result inte-
grated from the reviews. The above argument also explains
why we need to choose exactly R reviews for all correct
replicas.
Step 7: ML model re-training. Periodically if a replica ap-
pends δ news to the final state table, the replica will copy the
δ entries from the final state table to the labeled data set to
re-train the ML model. The replica will stop processing new
transactions while re-training, and once complete, resumes
its normal operations. The step improves accuracy of the
ML prediction over the time.

A machine learning model, making predictions (tempo-
rary results) for news from client requests, can take a few
minutes or even longer. Therefore, we separate the training
phase from the prediction phase. Specifically, during system
setup, we pre-train the ML model using ground truth data
set from our pre-collected labeled news. When the system
processes client requests, the ML model processes the news
by executing just the prediction phase. This will enable
online ML model and reduce the time for training from
scratch.
The need for threshold common coins. One may ask
if we need to use threshold common coins: would it be
possible to use pseudorandom function (PRF) or even a hash
function to select reviewers? The idea of using a publicly
known PRF or a hash function to generate random coins
for BFT, or more generally, for state machine replication,

8

dates back to Rodrigues, Castro, and Liskov [78]. The idea
can be used in ”benign” applications, say, generating coins
for randomized (non-deterministic) algorithms; it cannot be
used in scenarios where coins may be manipulated by the
adversary.

Our goal is to ensure that the reviewers are chosen in
an unpredictable manner, without being controlled by the
adversary. If the adversary can predict the reviewers chosen,
it can feed into the system with adaptively chosen news
feeds and maliciously train the ML model in the favor of
the adversary.

6.3 Proof of Correctness and Parameter Selection

In this section, we prove the correctness of Poligraph and
provide theoretical foundations on parameter selection.

Theorem 1. Two-layer consensus achieves agreement and
total order.

Proof 1. Agreement and total order follow from the under-
lying BFT protocol since both requests and reviews are
treated as transactions.

Theorem 2. Two-layer consensus achieves liveness-1 and
liveness-2.

Proof 2. Liveness-1 easily follows from the livness of the un-
derlying BFT protocol, as we order both expert reviews
and client requests. Liveness-2 is immediately implied
by liveness 1, as the temporary result does not involve
the review layer.

Lemma 3. Correct replicas agree on the same set of reviewers
for any transaction to be reviewed.

Proof 3. We observe that transactions are totally ordered by
all correct replicas. All correct replicas will take the same
input for the common coin protocol and thus obtain the
same common coin. Therefore, all correct replicas will
select the same set of reviewers.

Theorem 4. Two-layer consensus achieves liveness-3 under
either of the following two conditions: 1) I > 2B and
B + 1 ≤ R ≤ I − B, where B is the number of faulty
reviewers in the reviewer set selected by the replicas; 2)
N > 2F and F + 1 ≤ R ≤ N − F . (In particular, if
the underlying BFT protocol is asynchronous, two-layer
consensus achieves liveness-3 in asynchronous environ-
ments.)

Proof 4. According to Lemma 3, replicas agree on a common
set of reviewers. It is straightforward to verify that both
conditions guarantee that at least R correct reviews will
be received by all replicas. Thus, all correct replicas
will make the same review decision on the review. The
theorem thus follows from the liveness of the underlying
BFT protocol.

We define perfect validity and probabilistic validity. Perfect
validity guarantees that the final result received by a client
reflects a correct review, i.e., it is the same with that returned
by the majority of the reviewers. Probabilistic validity guar-
antees the same result with an overwhelming probability in
the parameter I (and parameters R, N , and F).

Lemma 5. It is computationally infeasible for adversaries to
distinguish if the I reviewers in the selected reviewer set
are uniformly chosen at random from all reviewers.

Proof 5. This is implied by the unpredictability property of
the underlying threshold PRF protocol.

Theorem 6. Two-layer consensus achieves perfect validity if
F + 1 ≤ R ≤ I − F .

Proof 6. Implied by Theorem 4.

Theorem 7. Two-layer consensus achieves probabilistic ac-
curacy if B + 1 ≤ R ≤ I − B, and N and I are large
enough.

Proof 7. Let α be the fraction of faulty nodes in N reviewers,
i.e., α = F

N . Let Xi be a random variable which outputs
value one if the i-th review collected from the reviewer
set is correct (where i ∈ {1, · · · , I}). Let X =

∑I
1Xi.

Clearly, X follows a binomial distribution.

Pr[X ≤ R] =

R∑
k=0

Pr[X = k] =

R∑
k=0

(
I

k

)
αI−k(1− α)k (2)

It is known that the probability decreases exponentially
as I increases. That is, given a security parameter λ, there
exists an I0 so that ∀I > I0, Pr[X ≤ R] ≤ 2−λ.

Examples. For Theorem 7, if we set α = 1
3 , λ = 20, and

R = b I+1
2 c, we have I0 = 180. In words, if 1/3 of the

total N reviewers are faulty and if each time we select 180
reviewers and expect 91 matching reviews to finalize the
result, then the probability that the review result does not
represent a correct review is once every 1 million reviewer
set selections.

As another example, we set α = 0.1, λ = 10, and
R = b I+1

2 c and we have I0 = 13. In words, if 10% of the
reviewers are faulty and if we select 13 reviewers and expect
7 matching reviews to finalize the result, then the probability
that the review result does not represent a correct review is
once every thousand reviewer set selections.
Generalizing the acceptance condition and the system
assumption. So far we have set the acceptance condition
as a simple threshold, i.e., replicas can make a decision
after receiving exactly R reviews with the same indicator
bit b. One can easily extend the acceptance condition to a
more general predicate on the reviews received. It is also
easy to make stronger system assumptions regarding the
percentage of faulty reviewers.

6.4 Machine Learning State Transfer
BFT nodes may experience (temporary) failures or attacks,
causing some “fall-behind” nodes. While several BFT pro-
tocols provide schemes for recovering nodes from fail-
ures [37], for systems with ML models integrated, it is not
clear how we can efficiently transfer ML state. In Poligraph,
we provide an efficient machine learning state transfer pro-
tocol to bring fall-behind replicas up to date.

In Poligraph, each replica maintains a system state st
and a set of ML state parameters a1, a2, · · · , ak. The system
state in Poligraph is defined to be the the hash of the
transaction history, i.e., the state after processing txj is
st = h(txj , h(stj−1)). In addition, the ML state parameters
are initialized with the parameters for the ML model.

9

ControllerS0

 h(st), seq, a1, a2 …
 h(st’), seq, a1’, a2’ …

RT: Request missing transactions

TH: Transaction history

ControllerS3

ControllerS1 ControllerS2STATE

STATE

STATE

STATE
1.STATE’ 2.RH 3.TH 1. STATE’3.TH 2.RH

1. STATE’

2.RH

3.TH
STATE

STATE

Figure 3: The ML state transfer architecture.

As illustrated in Figure 3, we provide a controller mod-
ule for each replica. The controller is used for consistency
checking and state transfer. In case of a replica inconsistency,
the controller will trigger the state transfer protocol and re-
initiate the ML model, thereby bringing the replica up to
date.

The state transfer protocol in Poligraph works as follows.
Step A: Send ML and replica state. Upon executing a fixed
number of transactions, each replica sends a message in the
form of 〈STATE, h(st), seq, a1, a2, · · · , ak〉 to other replicas,
where h(st) is the hash of the state st, seq is the largest
sequence number in the transaction table, and a1, a2, · · · , ak
are the current ML state parameters.
Step B: Controller module collects 〈STATE〉 messages. For
a replica pi, if it receives at least 2f + 1 matching messages
(denoted as 〈STATE, h(st′), seq, a′1, a

′
2, · · · , a′k〉), it compares

the received state st′ and its local state st.

• If st′ matches st, the state is considered as a stable state.
• If st′ does not match st, pi starts state transfer. Let seq′ be

the last sequence number where pi was consistent with
other replicas. To begin state transfer, pi first discards its
local state, transactions, and system logs between seq′

and seq. For all the incoming transactions, pi still par-
ticipates in the consensus. However, it only updates the
transaction table and does not process the transactions
or reply to the clients. Meanwhile, pi sends a message
〈RT, seq′, seq〉 to other replicas and requests the transac-
tions between seq′ and seq. If a replica receives a 〈RT〉
message and has executed transactions with sequence
numbers greater than or equal to seq, a replica will
reply with a 〈TH,mseq′ , · · · ,mseq〉, where mseq′ to mseq

are the transactions with sequence numbers between
seq′ and seq. Upon receiving matching 〈TH〉 messages
from at least 2f + 1 replicas, pi has all the transactions
with sequence numbers greater than seq′. Replica pi
will append these transactions to its transaction table.
Also, pi re-initializes its local ML model using the state
parameters a′1, · · · , a′k. Then it processes the transactions
with sequence numbers greater than seq′.

7 DISCUSSION

The benefits to fake news detection. The purpose of the
system is to enhance the quality of the data sets for fake
news detection utilizing two-layer BFT consensus. In other
words, our goal is not to study or enhance ML algorithms.
Instead, due to the growth of the labeled data set (final state
table), the accuracy of fake news detection will grow over
time.

Human review considerations. Although our paper pro-
vides a scheme to select uniformly random reviewers to
review the contents and ensure fairness, we cannot guaran-
tee that reviewers are unbiased. Our assumption is that the
majority of the reviewers provide the same review results.
Indeed, whether the reviews are biased is related to the
types of news, which is orthogonal to the focus of this paper.
Considerations about binary labels for news. Data set such
as the one from PolitiFact.com has several labels, i.e., true,
mostly true, half true, mostly false, false, and pants on fire.
We simplify them into a binary result, i.e., true or false,
for both ML results and human reviews. This is mainly
because, in our work, we consider an open framework
where non-experts (humans with certain knowledge) can
serve as reviewers. Furthermore, there are a large number
of reviewers. It is challenging for non-experts to distinguish
mostly true from half true and similarly, mostly false from false.
Furthermore, differentiating news into multiple categories
may create biased results. Therefore, we choose to use
binary result in our framework.
Generality of Poligraph. Although we focus on fake news
detection in Poligraph, the two-layer consensus protocol can
be used in data science in general or even applied to other
domains. For instance, consider a medical diagnosis prob-
lem. A typical workflow is that doctors diagnose manually
based on patient data, e.g, an image. If 3 out of 5 doctors
have a matching diagnosis, the corresponding image is la-
beled. The labeled data set is then used for ML training. This
is another ideal application for two-layer consensus where
doctors become reviewers. Patients get diagnosis results from
ML in the first layer and then final results from reviews. The
labeled data set grows over time and is stored securely in the
system.
Feasibility of Poligraph. Poligraph is an open platform for
fake news detection where reviewers are not necessarily
experts. As shown in our case study, people with certain
background knowledge can justify the authenticity of the
news much better than others. Therefore, Poligraph is more
suitable for news that is not subjective so that human re-
view results are not biased. Reviewers can be humans with
expertise (or at least some familarity) in certain domains.
In a complete system where news may fall into different do-
mains, reviewers can be tagged by their expertise. News can
also be tagged where they are only sent to reviewers with
the same tags. However, the considerations of who should
serve as reviewers are related to the concrete application if we
view Poligraph as a generic architecture.
Considerations of the validity of the labels. In our work,
we consider the labels of the news, once reviewed by re-
viewers, are final, i.e., if the same news is queried again,
the result is directly replied to the client. For some news,
the authenticity might change over time, e.g., even for some
scientific claims, the authenticity may change. We consider
this issue a validity problem of the labels. One approach to
address this problem is to set up an expiration time for each
final label of the data. We can assign the timestamp to each
label and an expiration time/data. After the expiration time,
the label can be considered invalid. If the news is queried
again, it has to go through all the processes and get reviewed
by reviewers again.

10

8 IMPLEMENTATION

We use ECDSA for authentication and use SHA-256 as the
hash function. We implement CKS threshold PRF [31] using
the Charm Crypto Python library [79]. We use the NIST P-
256 elliptic curve to provide 128-bit security.

We use BFT-SMaRt [80] as the underlying BFT engine, as
it is “the most advanced and most widely tested implemen-
tation of a BFT consensus protocol” [65]. We extend the BFT-
SMaRt library and implement a client-server service. Then
we connect the Java library with a Python library in which
we implement the ML models and the review layer. During
performance evaluation, we code human reviewers where
each reviewer node directly sends a pre-defined review
to the replicas. We separate our evaluation of reviewers
into two parts. When we evaluate the system performance
(scalability, throughput, etc.), we implement the reviewers.
Specifically, each reviewer script automatically replies with
the review result for each news.

We store the data and the state tables in three formats.
First, the transactions in the transaction table are written
into the database. We use batching to reduce hard disk
access and improve the system throughput. We set up a
tunable parameter, BatchSize, to provide performance trade-
offs. Second, the final state table and temporary state table
are stored in memory using hash maps. Last, we store the
labeled data set constructed from the final state table in a csv
file for the ML model, which is friendly for ML re-training.

We also implement the data preparation and ML models.
We first build a data crawler to collect labeled data sets using
two python libraries Beautifulsoup [81] and Selenium [82].
We use the labeled data sets to train our ML models to
form the initial machine learning state. We then use doc2vec
google news corpus [72] to extract the news word embed-
ding as the news features. We select 300 as the feature vector
size. Then, we adopt python scikit-learn [83] to implement
LR and SVM models. We serialize all the parameters into
string format and send them over the network. When a
node receives the state, it deserializes the state into the state
parameters and initializes the ML model.

For the ML model selection in our system, we use LR.
Meanwhile, other machine learning models are available,
e.g., random forest and XGBoost [84], [85]. Some prior works
also compare different fake news detection models in terms
of ML performance. However, depending on the concrete
scenarios, the models may achieve different performance.
For example, it was shown in [85] that XGBoost achieves
the best performance and in [86] that LR achieves the best
performance. Therefore, we select the LR model in our
implementation because it is a classic ML model, and can
achieve low latency and high throughput. To validate the
fact that our system can be integrated with any ML model,
we also implement SVM model in our system.
Evaluating Poligraph. As shown in Sec. 3, we have con-
ducted experiments for human reviewers to demonstrate
the need for Poligraph. Besides, We evaluate the system
performance of Poligraph. In particular, we implement the
behaviors of reviewers and show the results in Sec. 9. The
purpose is to evaluate the system performance under ex-
treme conditions, i.e., high concurrency of client requests
and a large number of human reviewers. Our evaluation

focus on metrics such as latency of each client request (how
long does it take for a user of Poligraph to get a ML response
to its request), system throughput (how many requests can
Poligraph handle at the same time), and ML performance
(whether Poligraph can benefit the data science community
in enhancing the data quality).

9 EVALUATION

We deploy and test our protocols on Amazon EC2 utilizing
up to 35 nodes (VMs). Each node is a general-purpose
t2.medium type with two virtual CPUs and 4GB memory.
Among these nodes, we use up to 10 different nodes to
run the replicas, 5 to run the reviewers, and 20 to run
up to 1,000 clients. We use each node to simultaneously
run up to 50 clients. We compare Poligraph with a single-
server, unreplicated implementation (denoted as n = 1 in
the figures).

9.1 Overview
We evaluate the performance of Poligraph from both system
and ML perspectives. From the system perspective, we
evaluate both latency (the delay between a client request
and response) and throughput (the number of transactions
processed per second) using different benchmarks. In ad-
dition, we show the peak throughput for parameters such
as news length (the number of characters) and δ. Recall δ
is a parameter, where after every δ news is appended to
the final state table, we update the labeled data set and re-
train the ML model. From the ML perspective, we show
that as the size of labeled data for training grows over time
and reviews are integrated, the accuracy of the ML models’
temporary feedback score improves.

We build several benchmarks for evaluation. In each
benchmark, a fraction of client requests has already been
reviewed and finalized. We use the notation x% final data set
to represent the case where x% of all the client requests are
already finalized. For all the experiments, we calculate the
average throughput/latency for all of the replicas.

We have evaluated the performance using both political
news (from PolitiFact.com) and entertainment news (from
GossipCop.com). Our evaluation shows that Poligraph in-
curs latency of 0.05 second and achieves throughput as high
as 5,500 tx/s. In addition, compared with a single-node
implementation, the throughput of Poligraph is about 4%-
7% lower.

9.2 Latency for Normal Operations and State Transfer
We assess the latency for f = 1, 2, and 3, where a single
client issues one news verification request to the system. We
assess the two cases: 1) the news already exists in the final
state table; 2) the news has never been reviewed before. As
shown in Figure 4a, the latency of the first case is much
lower than that of the second case for both political news
and entertainment news. This is because in the first case, the
replicas directly reply with a final result, while in the second
case, the replicas run the ML model to obtain a temporary
result and collect reviews from reviewers. Due to the use of
ML optimization, the latency is 1 to 2 seconds in the worst
case. The latency for entertainment news is higher than that

11

(a) Latency of Poligraph using 4 to 10 servers
for the two cases where the news already
exists in the final state table (final data set)
and the news has never been reviewed before
(not in final data set).

(b) Latency breakdown for normal case and
state transfer.

(c) Throughput of the Poligraph using 4
servers using a number of benchmarks,
where a fraction of news have already existed
in the final state table.

(d) Peak throughput v.s. different the news
lengths using 4 servers, 5 reviewers, and 700
clients.

(e) Peak throughput v.s. δ using 4 servers, 5
reviewers, and 700 clients.

(f) ML model performance improvement
over time.

Figure 4: Performance of Poligraph.

with political news, mainly due to news length. We also
report the latency breakdown of the normal case for political
news in Figure 4b, where the client sends a news item that
has never been processed before. As shown in the figure,
the ML and the review collection processes dominate the
latency. In practice, the review process can take much longer
and becomes the bottleneck of the system. However, the
client can get the temporary result immediately after the
ML step and the reviews can be collected asynchronously.

We evaluate the latency for state transfer. We inject one
failure and let one node become inconsistent with other
nodes. The nodes will then run the state transfer protocol
as described in Sec. 6.4. We also measure the latency break-
down in Figure 4b. The overall latency for state transfer
is around 2 seconds on average, and the ML state re-
initialization dominated the latency.

9.3 Throughput
We use three benchmarks to evaluate the throughput and
compare them with an unreplicated implementation of the
system. We assess the throughput by gradually increasing
the number of clients. For all these experiments, we use
news with length 150. We use 4 servers and 5 reviewers,
and set up BatchSize to 100. The replicas do not re-train
their ML models.

As we can see from Figure 4c, all experiments have a
similar trend. As the number of clients increases, the system
will be saturated with transactions, and the throughput will
reach its peak. In almost all experiments, the throughput
reaches its peak when the number of clients is greater than
600. However, the higher the fraction of news that is already
in the final state table, the higher throughput the system can

achieve. This is expected, for the same reason we observe
when assessing latency: if a news item has been recorded
in the final state table, the final result is directly returned
to the client. In the worst case, where 60% of the news has
never been reviewed before, the peak throughput can still
be higher than 4,000 tx/s. In the best case, where all the
news items have are already in the final state table, the peak
throughput is close to 5,500 tx/s. In comparison, the peak
throughput of the unreplicated version of Poligraph (n =
1) is close to 6,000 tx/s. In other words, Poligraph is only
marginally slower than its unreplicated version.

9.4 Impact of News Length
The lengths of news in the client requests will affect the
performance of the system in two ways: network bandwidth
and ML model prediction speed. Since nodes have to ex-
change several all-to-all messages in the consensus protocol,
longer messages will consume higher network bandwidth
which results in downgraded throughput. The ML model
execution time increases when it has to predict the veracity
of longer news items.

We evaluate the peak throughput by varying news
lengths in the client requests from 50 to 500. In all ex-
periments, we use 700 clients and no ML re-training is
triggered. As shown in Figure 4d, the throughput indeed
decreases as the length of news increases. The curves for the
two benchmarks are relatively smooth, which demonstrates
that Poligraph is capable of processing long news efficiently.
Note that for the 0% final data set benchmark, the replicas
need to run the ML model for each transaction. The perfor-
mance degradation, however, is almost similar to that of the
50% final data set benchmark. Therefore, the news length is

12

not a bottleneck to the system performance due to the use
of ML optimization.

9.5 Impact of ML Re-training
In this experiment, we aim to evaluate the throughput
under ML re-training. We use 700 clients, 4 servers, and
5 reviewers. We vary the δ parameter from 50 to 500. We
run three benchmarks where news lengths are 50, 150, and
200, separately. As illustrated in Figure 4e, we find that as
δ increases, the peak throughput first increases and then
decreases. The same trend applies to all three benchmarks.
Note that as δ increases, the performance will be affected
in two ways. First, the ML model will be re-trained less
frequently, during which the protocol will be stalled. Each
re-training process, however, will have higher latency. Sec-
ond, when we update the labeled data set, we simply write
all the new data from the final state table to the csv file.
The writing time is related to the length of the data. Other
operations, such as csv file open and close, are triggered per
update. Therefore, as δ increases, csv file operation and ML
re-training are triggered less frequently.

As δ first increases from 50 to 200, since re-training
is triggered less frequently, the peak throughput will be
higher. As the δ further increases, however, the performance
degrades. This is because the latency due to csv file update
is related to the length of the data. Note that each ML
re-training will stall the system performance for a longer
period of time. In summary, we find that the optimal perfor-
mance can be achieved when we update the csv file every
150 to 200 news items.

9.6 Scalability
We assess the peak throughput of Poligraph using n equals 4
to 10. We use 5 reviewers and set up news length as 150. We
use 700 clients and run the 50% final data set benchmark.

n Peak Throughput (tx/s) Degradation (%)
4 4358.75 —
7 4171.50 (4.29%)
10 3955.41 (5.18%)

Table 4: Scalability of Poligraph
We show the performance degradation as the number of

BFT servers n increases in Figure 4. As shown in the table,
the performance does not degrade significantly when the
number of servers increases. The performance degradation
of each experiment, when compared with the previous
experiment with a smaller n, is 4-5%. We find a similar
result when measuring latency, as shown in Figure 4a. We
comment that the scalability of the system is related to the
underlying BFT protocol though.

9.7 Machine Learning Performance Improvement
We show that the ML performance improves as a growing
labeled data set is generated by Poligraph. We first run
the protocol and let clients send requests from data set 1
collected from PolitiFact.com with 14,788 data entries. On
the server side, the news in the data set 1 is not stored in the
final state table, and the servers will run ML model for every
news article. After 4,000 news items have been evaluated by

Poligraph and put into the final state table, we re-train the
ML model using the 18,788 entries (the data set 2).

We utilize 10 cross-validation methods to run LR and
get precision, recall, and f1-score to evaluate the machine
learning classification performance.

Figure 4f shows the performance improvement for LR.
As expected, we find that the precision, recall, and f1-
score are improved. This demonstrates that Poligraph can
effectively enhance the accuracy of temporary results from
the ML models.

10 CONCLUSION

We motivate the need for combing machine learning and
expert reviews for fake news detection via a real-world case
study. We design and implement Poligraph, an intrusion-
tolerant fake news detection system, defending against
Byzantine failures and malicious attacks. Poligraph com-
bines machine learning techniques and human expert de-
termination based on two-layer consensus and resolves
many key challenges in fake news detection (e.g., online
and offline trade-offs, secure parallel reviews, practical
state transfer). Our extensive evaluation on Amazon EC2
demonstrates that Poligraph achieves latency as low as 0.05
second and throughput of more than 5,000 tx/s, being only
marginally (4%-7%) slower than an unreplicated, single-
server implementation.

ACKNOWLEDGMENT

Boxin Zhao, Haibin Zhang, and Sisi Duan’s work was sup-
ported in part by Shandong Key Research and Development
Program under grant No. 2020ZLYS09. Boxin Zhao and
Sisi Duan’s work was supported in part by National Key
Research and Development Program of China under grant
No. 2018YFA0704701.

REFERENCES

[1] H. Rashkin, E. Choi, J. Y. Jang, S. Volkova, and Y. Choi, “Truth
of varying shades: Analyzing language in fake news and political
fact-checking,” in EMNLP, 2017, pp. 2931–2937.

[2] D. M. Lazer, M. A. Baum, Y. Benkler, A. J. Berinsky, K. M.
Greenhill, F. Menczer, M. J. Metzger, B. Nyhan, G. Pennycook,
D. Rothschild et al., “The science of fake news,” Science, vol. 359,
no. 6380, pp. 1094–1096, 2018.

[3] V. L. Rubin, Y. Chen, and N. J. Conroy, “Deception detection for
news: three types of fakes,” in ASIST, 2015, p. 83.

[4] V. L. Rubin, N. J. Conroy, and Y. Chen, “Towards news verification:
Deception detection methods for news discourse,” in HICSS 2015.

[5] J. Gottfried and E. Shearer, News Use Across Social Medial Platforms
2016. Pew Research Center, 2016.

[6] G. Pennycook, T. Cannon, and D. G. Rand, “Prior exposure in-
creases perceived accuracy of fake news,” Journal of experimental
psychology: general, vol. 147, no. 12, p. 1865, 2018.

[7] S. Tschiatschek, A. Singla, M. Gomez Rodriguez, A. Merchant, and
A. Krause, “Fake news detection in social networks via crowd
signals,” in The Web Conference, 2018, pp. 517–524.

[8] E. C. Tandoc Jr, R. Ling, O. Westlund, A. Duffy, D. Goh, and
L. Zheng Wei, “Audiences‘ acts of authentication in the age of
fake news: A conceptual framework,” New Media & Society, 2017.

[9] D. Renzel, K. A. Rashed, and R. Klamma, “Collaborative fake
media detection in a trust-aware real-time distribution network,”
in SMDT, vol. 680, 2010.

[10] R. J. Sethi, “Crowdsourcing the verification of fake news and
alternative facts,” in HT, 2017, pp. 315–316.

[11] Z. Jin, J. Cao, Y. Zhang, and J. Luo, “News verification by exploit-
ing conflicting social viewpoints in microblogs,” in AAAI 2016.

13

[12] M. D. Vicario, W. Quattrociocchi, A. Scala, and F. Zollo, “Polar-
ization and fake news: Early warning of potential misinformation
targets,” TWEB, vol. 13, no. 2, pp. 1–22, 2019.

[13] J. A. Nasir, O. S. Khan, and I. Varlamis, “Fake news detection:
A hybrid cnn-rnn based deep learning approach,” International
Journal of Information Management Data Insights, vol. 1, no. 1, 2021.

[14] N. Aslam, I. Ullah Khan, F. S. Alotaibi, L. A. Aldaej, and A. K.
Aldubaikil, “Fake detect: A deep learning ensemble model for fake
news detection,” Complexity, vol. 2021, 2021.

[15] M. S. Mokhtar, Y. Y. Jusoh, N. Admodisastro, N. Pa, and A. Y.
Amruddin, “Fakebuster: Fake news detection system using logis-
tic regression technique in machine learning,” IJEAT, vol. 9, no. 1,
pp. 2407–2410, 2019.

[16] M. L. Della Vedova, E. Tacchini, S. Moret, G. Ballarin, M. DiPierro,
and L. de Alfaro, “Automatic online fake news detection combin-
ing content and social signals,” in 2018 22nd Conference of Open
Innovations Association (FRUCT). IEEE, 2018, pp. 272–279.

[17] Z. Jin, J. Cao, Y. Zhang, J. Zhou, and Q. Tian, “Novel visual and
statistical image features for microblogs news verification,” IEEE
transactions on multimedia, vol. 19, no. 3, pp. 598–608, 2016.

[18] Y. Wang, F. Ma, Z. Jin, Y. Yuan, G. Xun, K. Jha, L. Su, and J. Gao,
“Eann: Event adversarial neural networks for multi-modal fake
news detection,” in SIGKDD, 2018, pp. 849–857.

[19] D. Khattar, J. S. Goud, M. Gupta, and V. Varma, “Mvae: Multi-
modal variational autoencoder for fake news detection,” in WWW,
2019, pp. 2915–2921.

[20] S. Singhal, R. R. Shah, T. Chakraborty, P. Kumaraguru, and
S. Satoh, “Spotfake: A multi-modal framework for fake news
detection,” in BigMM. IEEE, 2019, pp. 39–47.

[21] S. Singhal, A. Kabra, M. Sharma, R. R. Shah, T. Chakraborty, and
P. Kumaraguru, “Spotfake+: A multimodal framework for fake
news detection via transfer learning (student abstract),” in AAAI,
vol. 34, no. 10, 2020, pp. 13 915–13 916.

[22] L. Cui, S. Wang, and D. Lee, “Same: sentiment-aware multi-modal
embedding for detecting fake news,” in ASONAM, 2019, pp. 41–
48.

[23] X. Zhou, J. Wu, and R. Zafarani, “Safe: Similarity-aware multi-
modal fake news detection,” PAKDD, vol. 12085, p. 354, 2020.

[24] L. Mearian, “Facebook’s blockchain cryptocurrency could mean
big money – and kill ’fake news’,” Computer world, 2019.

[25] W. Mason and S. Suri, “Conducting behavioral research on ama-
zon‘s mechanical turk,” Behavior research methods, vol. 44, no. 1, pp.
1–23, 2012.

[26] R. Zellers, A. Holtzman, H. Rashkin, Y. Bisk, A. Farhadi, F. Roes-
ner, and Y. Choi, “Defending against neural fake news,” in NIPS,
2019, pp. 9051–9062.

[27] “Fakebox,” https://machinebox.io/docs/fakebox (Dec 2021).
[28] A. D. Holan, “The principles of the truth-o-meter:

Politifact‘s methodology for independent fact-checking,”
https://www.politifact.com/truth-o-meter/article/2018/feb/
12/principles-truth-o-meter-politifacts-methodology-i/, 2018.

[29] “A project of the annenberg public poligy center,” https://www.
factcheck.org (Dec 2021), Annenberg.

[30] R. Heilweil, “Facebook is flagging some coronavirus news posts
as spam,” Vox, 2020.

[31] C. Cachin, K. Kursawe, and V. Shoup, “Random oracles in con-
stantinople: Practical asynchronous byzantine agreement using
cryptography,” Journal of Cryptology, vol. 18, no. 3, pp. 219–246,
2005.

[32] T. Dalrymple, “On the detection of fakes,” BMJ, vol. 334, no. 7599,
pp. 905–905, 2007.

[33] N. J. Conroy, V. L. Rubin, and Y. Chen, “Automatic deception
detection: Methods for finding fake news,” ASIS&T, vol. 52, no. 1,
pp. 1–4, 2015.

[34] Z. Jin, J. Cao, Y.-G. Jiang, and Y. Zhang, “News credibility eval-
uation on microblog with a hierarchical propagation model,” in
ICDM. IEEE, 2014, pp. 230–239.

[35] M. Sokolova, N. Japkowicz, and S. Szpakowicz, “Beyond accuracy,
f-score and roc: a family of discriminant measures for performance
evaluation,” in AJCAI, 2006, pp. 1015–1021.

[36] V. Pérez-Rosas, B. Kleinberg, A. Lefevre, and R. Mihalcea, “Au-
tomatic detection of fake news,” arXiv preprint arXiv:1708.07104,
2017.

[37] M. Castro and B. Liskov, “Practical byzantine fault tolerance and
proactive recovery,” TOCS, vol. 20, no. 4, pp. 398–461, 2002.

[38] R. Guerraoui, N. Knežević, V. Quéma, and M. Vukolić, “The next
700 bft protocols,” TOCS, vol. 32, no. 4, pp. 12:1–12:45, 2015.

[39] J. Hendricks, S. Sinnamohideen, G. R. Ganger, and M. K. Reiter,
“Zzyzx: Scalable fault tolerance through byzantine locking,” in
DSN. IEEE, 2010, pp. 363–372.

[40] F. Dettoni, L. C. Lung, M. Correia, and A. F. Luiz, “Byzantine fault-
tolerant state machine replication with twin virtual machins,” in
ISCC, 2013, pp. 398–403.

[41] R. Kapitza, J. Behl, C. Cachine, T. Distler, S. Kuhnle, S. V. Mo-
hammadi, W. Schröder-Preikschat, and K. Stengel, “CheapBFT:
Resource-efficient Byzantine fault tolerance,” in EuroSys, 2012, pp.
295–308.

[42] G. S. Veronese, M. Correia, A. N. Bessani, L. C. Lung, and P. Veris-
simo, “Efficient byzantine fault tolerance,” IEEE Transactions on
Computers, vol. 62, no. 1, pp. 16–30, 2013.

[43] S. Nikolaou and R. van Renesse, “Turtle consensus: Moving target
defense for consensus,” in Middleware, 2015, pp. 185–196.

[44] J.-P. Bahsoun, R. Guerraoui, and A. Shoker, “Making BFT protocols
really adaptive,” in IPDPS. IEEE, 2015, pp. 904–913.

[45] S. Liu, P. Viotti, C. Cachin, V. Quéma, and M. Vukolic, “XFT:
Practical fault tolerance beyond crashes,” in OSDI, 2016, pp. 485–
500.

[46] J. Li and D. Maziéres, “Beyond one-third faulty replicas in byzan-
tine fault tolerant systems,” in NSDI, 2007.

[47] S. Duan, S. Peisert, and K. N. Levitt, “hBFT: Speculative byzantine
fault tolerance with minimum cost,” IEEE Transactions on Depend-
able and Secure Computing, vol. 12, no. 1, pp. 58–70, 2015.

[48] B.-G. Chun, P. Maniatis, S. Shenker, and J. Kubiatowicz, “Attested
append-only memory: making adversaries stick to their word,” in
SOSP, 2007, pp. 189–204.

[49] S. Duan, K. Levitt, H. Meling, S. Peisert, and H. Zhang, “ByzID:
Byzantine fault tolerance from intrusion detection,” in SRDS.
IEEE, 2014, pp. 253–264.

[50] D. Levin, J. R. Douceur, J. R. Lorch, and T. Moscibroda, “TrInc:
Small trusted hardware for large distributed systems,” in NSDI,
2009, pp. 1–14.

[51] M. Correia, N. F. Neves, and P. Verissimo, “How to tolerate half
less one byzantine nodes in practical distributed systems,” in
SRDS. IEEE, 2004, pp. 174–183.

[52] P. Zielinski, “Optimistically terminating consensus: All asyn-
chronous consensus protocols in one framework,” in ISPDC.
IEEE, 2006, pp. 24–33.

[53] P. J. Marandi, M. Primi, and F. Pedone, “High performance state-
machine replication,” in DSN. IEEE, 2011, pp. 454–465.

[54] R. van Renesse, C. Ho, and N. Schiper, “Byzantine chain replica-
tion,” in OPODIS, 2012, pp. 345–359.

[55] S. Duan, H. Meling, S. Peisert, and H. Zhang, “BChain: Byzantine
replication with high throughput and embedded reconfiguration,”
in OPODIS, 2014, pp. 91–106.

[56] R. van Renesse and F. B. Schneider, “Chain replication for support-
ing high throughput and availability,” in OSDI, 2004, pp. 91–104.

[57] A. Miller, Y. Xia, K. Croman, E. Shi, and D. Song, “The honey
badger of BFT protocols,” in CCS, 2016, pp. 31–42.

[58] S. Duan, M. K. Reiter, and H. Zhang, “BEAT: Asynchronous BFT
made practical,” in CCS, 2018, pp. 2028–2041.

[59] J. Yli-Huumo, D. Ko, S. Choi, S. Park, and K. Smolander, “Where is
current research on blockchain technology? a systematic review,”
PloS one, vol. 11, no. 10, p. e0163477, 2016.

[60] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,”
Bitcoin, 2008.

[61] V. Buterin et al., “A next-generation smart contract and decentral-
ized application platform,” white paper, 2014.

[62] M. Vukolić, “Rethinking permissioned blockchains,” in BCC.
ACM, 2017, pp. 3–7.

[63] E. Buchman, “Tendermint: Byzantine fault tolerance in the age of
blockchains,” Master thesis, The University of Guelph, 2016.

[64] M. Vukolić, “The quest for scalable blockchain fabric: Proof-of-
work vs. BFT replication,” in iNetSeC, 2015, pp. 112–125.

[65] C. Cachin and M. Vukolić, “Blockchain consensus protocols in the
wild,” in DISC, 2017, pp. 1:1–1:16.

[66] L. Lamport, “The part-time parliament,” ACM Transactions on
Computer Systems (TOCS), vol. 16, no. 2, pp. 133–169, 1998.

[67] E. Androulaki, C. Cachin, D. Dobre, and M. Vukolić, “Erasure-
coded byzantine storage with separate metadata,” in OPODIS,
2014, pp. 76–90.

[68] C. Cachin, D. Dobre, and M. Vukolić, “Separating data and control:
Asynchronous bft storage with 2t+ 1 data replicas,” in SSS, 2014,
pp. 1–17.

14

[69] J. Yin, J.-P. Martin, A. Venkataramani, L. Alvisi, and M. Dahlin,
“Separating agreement from execution for byzantine fault tolerant
services,” in SOSP, 2003.

[70] S. Duan and H. Zhang, “Practical state machine replication with
confidentiality,” in SRDS. IEEE, 2016, pp. 187–196.

[71] Y. Wang, L. Alvisi, and M. Dahlin, “Gnothi: Separating data
and metadata for efficient and available storage replication.” in
USENIX Annual Technical Conference, 2012, pp. 413–424.

[72] M. Mihltz, “Pre-trained word2vec google news corpus,” Google,
2017.

[73] C. Dwork, N. Lynch, and L. Stockmeyer, “Consensus in the pres-
ence of partial synchrony,” JACM, vol. 35, no. 2, pp. 288–323, 1988.

[74] D. Crankshaw, The design and implementation of low-latency predic-
tion serving systems. University of California, Berkeley, 2019.

[75] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis,
A. De Caro, D. Enyeart, C. Ferris, G. Laventman, Y. Manevich
et al., “Hyperledger fabric: a distributed operating system for
permissioned blockchains,” in EuroSys, 2018, pp. 1–15.

[76] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin, “Secure dis-
tributed key generation for discrete-log based cryptosystems,” J.
Cryptology, 2007.

[77] A. Kate, Y. Huang, and I. Goldberg, “Distributed key generation in
the wild.” IACR Cryptology ePrint Archive, vol. 2012, p. 377, 2012.

[78] M. Castro, R. Rodrigues, and B. Liskov, “Base: Using abstraction to
improve fault tolerance,” ACM Trans. Comput. Syst., vol. 21, no. 3.

[79] J. A. Akinyele, C. Garman, I. Miers, M. W. Pagano, M. Rushanan,
M. Green, and A. D. Rubin, “Charm: a framework for rapidly
prototyping cryptosystems,” JCEN, vol. 3, no. 2, pp. 111–128, 2013.

[80] J. Sousa, E. Alchieri, and A. Bessani, “State machine replication for
the masses with bft-smart,” in DSN, 2014, pp. 355–362.

[81] L. Richardson, “Beautiful soup documentation,” Python, 2007.
[82] H. Percival. ” O’Reilly Media, Inc.”, 2014.
[83] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,

O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al.,
“Scikit-learn: Machine learning in python,” JMLR, vol. 12, no. Oct,
pp. 2825–2830, 2011.

[84] B. Bhutani, N. Rastogi, P. Sehgal, and A. Purwar, “Fake news
detection using sentiment analysis,” in IC3, 2019, pp. 1–5.

[85] J. Lin, G. Tremblay-Taylor, G. Mou, D. You, and K. Lee, “Detecting
fake news articles,” in Big Data. IEEE, 2019, pp. 3021–3025.

[86] N. Pinnaparaju, V. Indurthi, and V. Varma, “Identifying fake news
spreaders in social media.” in CLEF (Working Notes), 2020.

Guohou Shan is a PhD Candidate in the De-
partment of Management Information System of
Temple University. His research interests include
Fake news, Healthcare IT, blockchain, and online
community.

Boxin Zhao received his PhD degree in Cyber
Science and Technology from Shandong Univer-
sity in 2020. He is currently a postdoctor at the
Institute for Advanced Study, Tsinghua Univer-
sity. His research interests include cryptography
and blockchain.

James Clavin is currently pursuing a PhD in
information systems with a focus in healthcare
informatics from the University of Maryland Bal-
timore County. He is the chief technology and
compliance officer at Hilltop Institute. Jim has an
MBA from the University of Baltimore, a BS from
UNC-Wilmington, and a BA from UNC-Chapel
Hill. His research interests include healthcare
informatics and blockchains.

Haibin Zhang received his PhD degree in com-
puter science from University of California, Davis
in 2014. He is a research scientist in Shandong
Institute of Blockchain. During the academic
year 2017-2020, he was an assistant professor
in the CSEE Department at University of Mary-
land, Baltimore County, leading the Distributed
Systems and Security (DSS) Lab. His research
interests are in the intersection of distributed
systems, system security, and applied cryptog-
raphy, particularly in the design and implemen-

tation of Byzantine fault-tolerant (BFT) distributed systems.

Sisi Duan received her Ph.D. in Computer Sci-
ence from the University of California, Davis in
2014. She is currently a researcher at the In-
stitute for Advanced Study, Tsinghua University.
She is also a member of Beijing National Re-
search Center for Information Science and Tech-
nology. Prior to joining Tsinghua University, she
was an Assistant Professor at the University of
Maryland, Baltimore County from 2017 to 2020
and a Weinberg Fellow at Oak Ridge National
Laboratory from 2015 to 2017. Dr. Duan’s re-

search interests include security, blockchain, distributed systems, and
applied cryptography. She is a member of IEEE.

