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A blockchain is a distributed system that achieves strong security guarantees in storing, managing, and processing data. All

blockchains achieve a common goal: building a decentralized system that provides a trustworthy service in an untrustworthy

environment. A blockchain builds a Byzantine fault-tolerant system where decentralized nodes run a protocol to reach an

agreement on the common system state. In this article, we focus on the research of BFT protocols. In particular, we categorize

BFT protocols according to both the system models and workflow. We seek to answer a few important questions: How has

the research in BFT evolved in the past four decades, especially with the rise of blockchains? What are the driven needs for

BFT research in the future?
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1 INTRODUCTION
Blockchains are distributed systems that provide a secure and trustworthy service via a group of parties that do not

have to trust each other [202]. Blockchains have many forms, ranging from cryptocurrencies such as Bitcoin [182]

to more general-purpose systems such as Ethereum [226] and Hyperledger Fabric [30]. A Blockchain acts as

a trusted service for maintaining a shared state and providing secure and reliable data storage and processing

service. In recent years, blockchain implementation in real systems has increased and as of today, there are

numerous startup companies and corporations using blockchain in a wide range of industries. Because of the

strong security guarantees, blockchains can potentially disrupt any industry in which the data and the service

need to be protected.

Blockchains can be generally categorized into permissionless blockchains (e.g., Bitcoin and Ethereum) and

permissioned blockchains (e.g., Hyperledger Fabric). There is no barrier to entry with permissionless blockchains,

anyone can participate so long as they can run the application necessary to participate in its network. By

comparison, permissioned blockchains require participants to know each other’s identities upfront, but they

do not have to trust one another. Both types of blockchains achieve the same goal: developing a Byzantine
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fault-tolerant (BFT) system using consensus, sometimes referred to as the Byzantine generals problem [150].

Byzantine fault tolerance replicates the system state of a single node to multiple distributed nodes. The distributed

nodes work to reach a consensus about one common state during normal-case operations, as well as when

arbitrary failures and malicious attacks occur. Together the distributed nodes behave as a single node, thereby

using replication to provide high availability of services and integrity of the data, despite failures and adversaries.

Because blockchain builds a Byzantine fault tolerant service and given its rise in recent years, there has been

renewed interest in studying and implementing distributed consensus protocols generally.

Yet the field of blockchain is still developing, partly because building a trustworthy blockchain demands

expertise in cryptography, security, and the theories of distributed systems [62]. Also, the nature of what

constitutes a blockchain is still being grasped. Different interpretations of what blockchains are, their capabilities,

and how they should be used exist for many people. These differing interpretations have causedmisunderstandings

about the technology that threaten its chances of adoption. Furthermore, as developers and researchers explore

blockchains in numerous application domains, the applications have varying system needs dependent upon

the given context. For instance, financial applications may favor security and privacy over performance. In

comparison, other less critical systems may demand high throughput and scalability in most cases, while still

requiring the system to handle arbitrary failures and malicious attacks.

The purpose of this article is to provide a comprehensive review of the categories of blockchains, the underlying

consensus mechanisms and principles, and the consensus protocols used and proposed by both industry and

academia. In particular, we focus on the research of BFT protocols with their usage in both permissioned and

permissionless blockchains. We aim to not only categorize the BFT research in the past four decades, but also to

understand the evolvement of BFT research especially upon the rise of blockchains, and have an outlook of BFT

research in blockchains. Based on a brief review of several known use cases of blockchains, we would also like

to provide insights on what is the most appropriate model for each use case. Note that although the consensus

is the key to the correctness of blockchains, blockchains do not only include consensus [44]. Studies on other

aspects of blockchains could be found, e.g., blockchain interoperability [163] and smart contracts [114, 131, 233].

Our review focuses on BFT approaches. Therefore, the insights we provide, especially on the impact to the use

cases, are based on the model and performance of the BFT mechanism.

Why another survey about Blockchains and BFT? Several survey papers for blockchains or BFT consensus

are relevant to our paper [38, 62, 80, 183, 185, 193, 221, 222], and there are reviews of BFT used by industry

systems and specific application areas [62, 73, 93, 157, 185, 221, 222, 227], including reviews that focus on BFT

only [80, 93, 193]. Compared to previous survey papers, our article makes the following additional contribution.

First, we categorize BFT into several types and analyze their properties from the perspective of blockchains,

i.e., whether any protocols in the category are being used by real systems, whether the category is suitable for
blockchains. Second, we provide insights on how to build a correct consensus protocol and how to understand the

consensus protocols to build a correct blockchain system. Third, from the perspective of blockchains, we analyze

the evolving trend of BFT research in the past four decades. Last but not least, based on the discussion of BFT

categories and use cases, we provide suggestions on which consensus approach might be the best fit for each.
The rest of the paper is organized as follows. We begin with the introduction of the terms and categories of

blockchains in Sec. 2. In Sec. 3 and Sec. 4, we provide a comprehensive review of the different categories of BFT

used in both permissioned and permissionless blockchains. We review the use cases that are being explored by

researchers and decision-makers in Sec. 5. Finally, in Sec. 6, we also summarize the features of the BFT approaches,

summarize the evolving trend of BFT in the past four decades, and provide insights on when to use which type of

blockchains from the BFT perspective.
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2 BLOCKCHAINS: TERMS AND CATEGORIES

2.1 System Model
A blockchain involves a number of nodes/replicas as participants. The replicas are servers in the client-server

model. Clients submit transactions/requests to the servers and expect a reply for each request. The transactions

may involve certain operations to be executed by the replicas. The replicas deliver the transactions after reaching
a consensus on the order of the transactions. Blockchains organize transactions into blocks. Each block has a

fixed size and consists of multiple transactions. In some systems, transactions are organized into batches, where
each batch consists of a certain number of transactions. In this paper, we use transactions, client requests, and

operations interchangeably.

A correct blockchain system tolerates Byzantine failures, i.e., arbitrary failures that could be caused by software

bugs, hardware errors, and malicious attacks. In comparison, there are also other types of failures such as crash
failures, where a crashed node simply stops executing any operations.

Timing assumption. The timing assumptions of the systems can be categorized into the three following models.

• Synchronous model. There exists a known upper bound for message delivery and processing time.

• Partially synchronous model [103]. There exists an unknown upper bound for message delivery and pro-

cessing time.

• Asynchronous model. There does not exist an upper bound for message delivery and processing time.

Adversary models. The system may rely on different adversary models. It can roughly be divided into the

following models [21].

• Threshold Adversary (TA) Model. The system has 𝑛 nodes in total and the adversary controls up to 𝑓 of

them. A typical threshold is 𝑛 > 3𝑓 .

• Computational Threshold Adversary (CTA) Model. The system has a total of 𝑛𝑐 computational power and

the adversary controls up to 𝑓𝑐 computational power. A typical threshold is 𝑛𝑐 > 2𝑓𝑐 .

• Token Threshold Adversary (TTA) Model (Cryptocurrencies only). The system has a total of 𝑛𝑡 tokens and the

adversary controls up to 𝑓𝑡 tokens.

Besides Byzantine nodes, there may also exist a malicious network scheduler (considered in asynchronous

systems only), which may delay the messages between any two nodes arbitrarily but cannot drop the messages.

In other words, if a correct sender sends a message to another correct receiver, the message is eventually received

by the receiver but there is no guarantee on the upper bound for message delivery time.

In the TA model, there is an important concept called quorum. Specifically, in the Byzantine failure model,

if there are 𝑛 replicas, the system can tolerate 𝑓 = ⌊𝑛−1
3
⌋ replicas and the quorum size is ⌈𝑛+𝑓 +1

2
⌉. In certain

protocols or in the crash failure model, 𝑓 = ⌊𝑛−1
2
⌋ replicas and the quorum size is ⌈𝑛+1

2
⌉. For a consensus protocol

that considers TA model, it requires a quorum of replicas to reach a consensus before an operation is delivered.

Recent works also consider quorum based systems in asymmetric trust settings [61, 63, 85]. Specifically,

conventional systems consider that all replicas have symmetric views on the number of failures in the system.

Asymmetric quorum-based systems allow each replica to choose which nodes it trusts and which nodes can

be considered faulty. Asymmetric quorum systems generalize conventional Byzantine systems by allowing

replicas to maintain different quorum sizes. Similar idea has also been considered in practice such as the Stellar

consensus [173].

Smart contracts. Smart contracts are small programs that can be written by any client and that are deployed

to the blockchain in the form of a transaction. These contracts contain functions that can be called by users to

update the smart contract, who will then submit a transaction to the system. After replicas reach a consensus

about the order of the transaction, replicas then execute the smart contract’s requirements accordingly and return
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the result to the clients. Popular smart contracts include Ethereum virtual machine (EVM) and Hyperledger

Chaincode.

System goals. Blockchain achieves atomic broadcast in the Byzantine failure model. This is usually achieved

using Byzantine fault-tolerant state machine replication (BFT-SMR). The correctness of the system can be defined

as follows.

• Agreement. If a correct replica delivers a transaction𝑚, then every correct replica delivers𝑚.

• Total Order. If a correct replica delivers transaction𝑚1 before𝑚2, then any other correct replica delivers𝑚1

before𝑚2.

• Liveness. If a transaction is submitted to a sufficient number of correct replicas, then all correct replicas

eventually deliver𝑚.

The total order property is a safety rule while the agreement and liveness properties are liveness rules. The

agreement property is not required in some BFT protocols [65, 230] (in fact, most partially synchronous BFT does

not explicitly require agreement), as it can be achieved via other approaches, e.g., state transfer.

There is another closely related concept called reliable broadcast, where a designated sender sends a message

to all replicas. It guarantees that correct replicas all deliver the message or no one delivers the message. If the

system tolerates Byzantine failures, the problem is also called Byzantine broadcast.

System parameters. A blockchain consensus runs in epochs (sometimes referred to as rounds). In each epoch,

the consensus is reached on the order of one transaction or one batch of transactions. The transaction is assigned

with a sequence number (or height) that represents the order of the transaction in the transaction history. To reach

a consensus, some protocols may run several rounds before the protocol terminates. In these types of protocols,

replicas run the same steps several times before they reach a consensus on certain operations.

System evaluation criteria. Blockchain systems are evaluated experimentally according to several criteria:

latency, throughput, server scalability, and client scalability.

• Latency. The period of time from the client sending a transaction to receiving a reply.

• Throughput. The number of transactions processed per second.

• Server scalability. The number of servers the systems can have to achieve decent throughput.

• Client scalability. The number of clients that can be handled by the system where the clients send/submit

transactions concurrently.

Theoretically, latency can be evaluated as the number of steps in each protocol. Throughput can be evaluated

by the number of messages/cryptographic operations the bottleneck server needs to process or the total number

of messages in each consensus epoch.

There are also two other theoretical criteria:

• Message complexity. The total number of messages replicas need to exchange, which can be used to evaluate

the server scalability.

• Communication complexity. The total size of the messages replicas needs to exchange, which can be used to

measure the expected network bandwidth for the system.

Most protocols are evaluated experimentally using various workloads. Several solutions are also proposed

with various benchmarks to evaluate different blockchain protocols [92, 228].

2.2 Categories
Blockchains are categorized into permissionless and permissioned blockchains. In permissionless blockchains,

anyone can join the system. In permissioned systems, a node needs permission to join the system and nodes

need to know the identities of each other. Most permissionless blockchains consider the computational threshold

adversary model and assume a synchronous network. In contrast, most permissioned blockchains consider the
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threshold adversary model and a partially synchronous/asynchronous network. Some blockchains are hybrid and

combine the features of both permissionless and permissioned blockchains.

Depending upon the members/organizations that participate in the blockchains, blockchains can be categorized

into public blockchains, private blockchains, and consortium blockchains. In public blockchains, anyone can

join the blockchain system. In comparison, the private blockchain is run by a single organization. Consor-

tium blockchains allow multiple organizations to run the system. Most permissionless blockchains are public

blockchains but some organizations have adopted them as private blockchains to improve performance over

existing processes. In comparison, most permissioned blockchains are private or consortium blockchains.

Cryptographic Hash Chain. All blockchains adopt the same approach to represent the total order of the

transactions, i.e., cryptographic hash chain, as illustrated in Fig. 1. For each block k, the node that proposes the

block generates a hash of the block and then appends a digital signature to the block. Before the next node starts

to propose a new block, it must verify the hash and the signature. If the previous block is verified, the hash

and the signature of the previous block and the transactions of the current block will be used to generate the

hash of the new block. The list of the transactions over time becomes a hash, or block, chain. Together with

the underlying consensus protocol, such a hash chain ensures that no one can manipulate the contents of any

block, and the sequence of transactions form a total order which all nodes have reached an agreement on. In most

permissionless blockchains, ideally, the blocks should be proposed by different nodes to ensure the correctness of

the system. In contrast, in BFT-based permissioned blockchains, a node does not necessarily have to append a

digital signature or verify the digital signature of the previous proposer, as the underlying consensus protocol

already guarantees the total order of the transactions.

Block k

Hash of 
block k

tx100

tx101

Nonce 
(PoW only)

Hash

Signature

Block k+1

Hash of 
block k+1

tx102

tx103

Nonce 
(PoW only)

Hash

Signature

Block k+2

Hash of 
block k+2

tx104

tx105

Nonce 
(PoW only)

Hash

Signature

Fig. 1. Cryptographic hash chain.

Permissionless Blockchains. Most permissionless blockchains adopt a Proof-of-X, or -Something, strategy, as

discussed in greater detail later. In the case of Bitcoin, this is Proof-of-Work (PoW). PoW is a mathematical puzzle

that needs to be solved, the process of which is also known as mining. Once mined, a node proposes a new block

and is rewarded if the proposal is finalized. The drawback to this approach is that the throughput is limited, and

the energy consumption is high. Furthermore, nodes may ‘collaborate’ and form mining pools in order to solve

PoW faster than others. As a result, a PoW system is reduced to a limited number of mining pools, making the

blockchain less decentralized and therefore less secure.
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Permissioned Blockchains.Most permissioned blockchains are based on BFT-SMR. Less energy is consumed by

BFT-based systems because nodes actively reach an agreement by running a BFT protocol to determine the total

order of transactions. A BFT protocol allows nodes to exchange messages in several steps before an agreement is

reached. BFT protocols can be leader-based or leaderless. In leader-based protocols, the leader proposes the order

of the transactions and other nodes choose to agree or disagree. When the leader fails, another new leader will

be selected. In comparison, in leaderless protocols, all nodes can propose and those ones that the nodes reach an

agreement on will be merged in the end. Compared with permissionless blockchains, BFT is provably secure and

the system performance is usually orders of magnitude faster.

Hybrid Blockchains. Several hybrid blockchains combine the two types of blockchains to enjoy the benefits of

both [105, 117, 141, 143, 155, 165, 232]. Most of these approaches rely on PoW and its variants to build an open

blockchain where anyone can participate. But to address the low performance and high energy consumption of

PoW, different permissioned techniques are applied. For instance, each node that solves PoW may be allowed

to propose multiple blocks instead of one so as to reduce the frequency of mining [105]. In another case, PoW

can be used as a membership protocol to select a small group of nodes called committees. The committees can

then represent all nodes in the system to determine the order of the transactions, possibly using BFT to reach

consensus among committees [141, 143, 165].

3 BFT PROTOCOLS
BFT, as the only generic approach to handle arbitrary failures, has been studied extensively since it was proposed

in the 80s [150]. After the first-ever practical BFT protocol, called PBFT, was developed [65], numerous practical

protocols have been proposed. BFT can be categorized into three types according to the timing assumption:

synchronous, asynchronous, and partially synchronous protocols.
BFT assumes the TA model. It is known that in the synchronous model, a Byzantine broadcast problem can be

solved using 𝑛 ≥ 𝑓 + 1 replicas [94, 106, 107, 109, 109] and a BFT agreement protocol needs 𝑛 ≥ 2𝑓 + 1 replicas to

tolerate 𝑓 Byzantine failures [19, 23, 135]. This is the same with crash fault-tolerant protocols in the partially

synchronous model [130, 149, 187] that are widely used in real systems such as Google’s Chubby [53] and Apache

Zookeeper [124]. In partially synchronous and asynchronous models, a BFT system has to have 𝑛 ≥ 3𝑓 + 1

replicas. With additional tools such as trusted hardware, the requirement could also be reduced to 𝑛 ≥ 2𝑓 + 1.

Although most permissionless blockchains consider a synchronous model, real networks are not synchronous.

Furthermore, to the best of our knowledge, synchronous BFT protocols have never been implemented in any real

system. Therefore, in this article, we only consider partially synchronous and asynchronous protocols.

System components. A BFT protocol consists of two components: operation of the protocol and garbage

collection (also known as checkpoint sub-protocol). During the operation of the protocol, replicas reach an

agreement on the order of client requests (transactions). In different BFT categories, protocols may further

have different sub-protocols for the operation of the protocol. During the garbage collection, replicas generate

stable checkpoints, delete unnecessary system logs, and release memory space. The garbage collection process is

relatively independent of the operation of the protocol. Although the garbage collection sub-protocol may affect

system performance and durability of the system [45], the same garbage collection approach can be applied to

most BFT protocols without affecting the correctness of the protocols. In this article, we focus on the operation

of the protocol, compare and contrast the BFT protocols in terms of the operation.

3.1 BFT in the partially synchronous model
Most BFT protocols assume the partially synchronous model. The protocols are usually leader-based, i.e., there is

only one leader at a time and the replicas reach a consensus about the identity of the current leader. Such protocols

usually involve two major subprotocols: normal-case operation and view change. Replicas run the normal-case
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operations according to the protocol when the leader is correct. If the leader is suspected to be faulty, replicas

run the view change subprotocol to elect a new leader. To detect whether the leader is faulty, replicas need to

set up timers and ensure that the system makes progress. For instance, each replica sets up a timer for the first

pending transaction in its queue. If the transaction has not been delivered before the timer expires, the replica

will run the view change subprotocol. If a sufficient large fraction (i.e., a quorum) of replicas start the view change

subprotocol, a correct new leader will eventually be selected.

According to the FLP theorem [108], synchronous or partially synchronous protocols may suffer from zero

throughput in an asynchronous environment and make no progress at all. According to the theorem, the

safety (agreement and total order) of such protocols will not be violated. Therefore, the safety of most partially

synchronous protocols can be proved in an asynchronous environment. The liveness, however, requires partially

synchrony, i.e., the network eventually becomes synchronous. Otherwise, the protocol may not make progress

at all, achieving zero throughput. Despite the zero throughput issue, in a normal network with no network

scheduler, partially synchronous protocols are usually very fast, achieving low latency and high throughput.

Therefore, the majority of BFT protocols in the literature assume partially synchrony.

We categorize partially synchronous protocols into the following types according to the characteristics of the

workflow: broadcast-based BFT, hybrid BFT, chain-based BFT, trusted hardware-based BFT, scalable BFT, and others,
the description of which are shown in Table 1. A protocol may fall into multiple categories. For instance, most

trusted hardware-based BFT protocols are also broadcast-based BFT. Therefore, our intention is not to draw a

line between different categories, but rather to show the similarities and design motivation for the protocols.

Category Description

Broadcast-based BFT Protocols that involve all-to-all or one-to-all communication

Hybrid BFT Protocols that switch between different sub-protocols

Chain-based BFT Protocols where replicas are organized into a chain-based topology

Trusted hardware-based BFT Protocols that involve trusted based hardware component

Scalable BFT Group-based or hierarchical protocols that are designed to scale the number of replicas involved

Others Protocols aiming at other goals such as confidentiality

Table 1. Classification of partially synchronous BFT protocols. A protocol may fall into multiple categories.

REQUEST
Client

Server 1
(Leader)

Server 2

Server 3

Server 4

PRE-
PREPARE PREPARE COMMIT REPLY

(a) Normal-case operation of PBFT [65]. (b) Normal-case operation of HotStuff [230]. Client requests

and replies are ignored.

Fig. 2. Normal-case operation of broadcast-based BFT.

Broadcast-based BFT. Broadcast-based protocols involve several steps of all-to-all or one-to-all communication,

i.e., each replica may need to communicate with other replicas. This is a conventional message pattern employed
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by BFT protocols. As illustrated in Fig. 2(a), the normal-case operation of PBFT involves three steps of all-to-all

communication. The leader first assigns an order to a batch of transactions and sends a PRE-PREPARE message

to the replicas. The replicas acknowledge the transaction by sending PREPARE messages to each other. A replica

collecting a total of 2𝑓 + 1 matching PREPARE messages will send a COMMIT message to other replicas. Finally,

if a replica receives 2𝑓 + 1 matching COMMIT messages, a consensus is reached by sufficient correct replicas. The

replica can then deliver the transactions, execute the corresponding operations, and send a reply to the client.

Since the protocol is leader-based, other replicas also need to monitor the correctness of the current leader. If
more than 𝑓 + 1 replicas suspect the current leader, they trigger a view change and exchange another step of

messages to elect a new leader. This view change may continue until a correct leader is in charge.

The first practical BFT protocol, PBFT, is a broadcast-based protocol [65], and it is to-date still one of the most

practical, with variants that are widely used in permissioned blockchains [62] and hybrid blockchains [89, 165, 190].

However, PBFT has some performance issues in some cases, and solutions have been proposed, each with varying

costs [27, 32, 76]. The root issue is that malicious replicas in the system can collude and manipulate the value of

the timer and make it extremely large. This is because the value of the timer may not be appropriate in a partially

synchronous environment so the protocol resets the timer (by doubling the value) during each view change. After

the timer becomes sufficiently large, a faulty leader can then make the system process certain client requests

before the timer expires so as not to be suspected by the replicas. Other client requests can be delayed arbitrarily.

In this way, the system becomes extremely slow and nothing goes ‘wrong’. Although this type of attack focuses

on PBFT, such an attack can likely be applied to most broadcast-based partially synchronous protocols.

Numerous works enhance the performance of PBFT [18, 32, 52, 82, 99, 122, 144, 171, 209, 217]. A common

approach is to shift tasks from replicas to the clients to reduce the message and communication complexity of

the replicas [18, 82, 122, 144, 171, 217]. This approach is inspired by the concept of quorum systems [175]. For

instance, QU [18] builds a system that requires 𝑛 ≥ 5𝑓 + 1. It requires clients to directly communicate with the

replicas to read and update data. A client only communicates with a quorum of replicas and validates the results

before proceeding to the next step. HQ [82] further optimizes the approach and lowers the lower bound of 𝑛 to

𝑛 ≥ 3𝑓 + 1. Such approaches rely on correct clients for the system to make progress. Therefore, replicas also

need to authenticate themselves before delivering an operation, which can prevent faculty clients from making

replicas inconsistent. Such an approach acts as a leaderless system which reduces the message complexity of

PBFT-like protocols from 𝑂 (𝑛2) to 𝑂 (𝑛). The drawback, however, is that client requests cannot be batched so the

system performance may still be limited in practice.

The approach can be further improved using a leader-based workflow. Specifically, the leader communicates

with the replicas and replicas do not necessarily have to communicate with each other [122, 144, 171, 230]. For

instance, in Zyzzyva [144], the leader first sends a message to the replicas. The replicas directly reply to the client.

If the client receives matching replies from all replicas, the operation is delivered. Otherwise, replicas need to

further exchange messages with each other. Fab [171] uses a similar workflow. This reduces the number of steps

of PBFT from three to one in the failure-free case and two in case of backup failure(s). The message complexity

can be reduced to 𝑂 (𝑛) in the failure-free case but the complexity under failures is still 𝑂 (𝑛2). Unfortunately,
Zyzzyva and Fab were later on found to have safety issues due to their design of the view change and solutions

have been given accordingly [20]. The message complexity remains the same for both Zyzzyva and Fab. The

difference is that the view change subprotocol involves more steps.

HotStuff [230] is another recent addition to the BFT family of protocols. It is inspired by the concept of consistent

broadcast, a classic approach in distributed systems [57]. As illustrated in Fig. 2(b), the leader communicates with

the backups and collects votes from them. This continues three times before replicas deliver the corresponding

operation, which can be mapped to the three steps in PBFT for ensuring correctness. This increases the number of

steps in PBFT from three to seven but reduces the message complexity from 𝑂 (𝑛2) to 𝑂 (𝑛). If replicas can utilize
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pipelining to compensate for the number of steps (which is also called Chained HotStuff), system throughput can

be improved. Specifically, replicas can start processing the next transaction before the previous one is delivered.

Several broadcast-based BFT protocols have been used in the industry. For instance, a variant of HotStuff called

LibraBFT [39] has been used by the Libra blockchain (now rebranded as Diem) [4]. Tendermint [52] (a variant

of PBFT) has been used by Hyperledger Burrow [6] and Tendermint core [16]. Symbiont Assembly [15] uses a

variant of BFT-SMaRt [209], another variant of PBFT.

▷ Remark. The broadcast-based BFT is the most popular type of BFT protocol due to its robustness. Specifically,

it allows replicas to exchange messages before reaching a consensus so all replicas essentially share the same

information. The major drawback is the unavoidable𝑂 (𝑛2) message complexity which limits the server scalability.

Although the complexity can be reduced to 𝑂 (𝑛), latency can be increased significantly and replicas still need to

perform extensive cryptographic operations to authenticate each other, although they do not necessarily have to

communicate with each other. Threshold cryptography and its variants can be used to reduce the number of

cryptographic operations. The performance in real systems, however, is yet to be carefully evaluated.

Note that some blockchains adopt non-BFT protocols or protocols that have not been formally analyzed or

proven. For instance, Hyperledger Fabric provides the options to use Kafka [146] or Raft [187]. The Quorum

blockchain [5] and R3 Corda [51] also provide an option to use Raft as the consensus protocol. The private version

of Kadena blockchain [9] uses the ScalableBFT [225] protocol which is heavily inspired by Tangaroa [77], a BFT

version of Raft. Raft and Kafka are two crash fault-tolerant protocols that do not tolerate Byzantine failures,

and Tangaroa is neither safe nor live [62]. In other words, any protocols used in blockchains should be carefully

reviewed before being deployed in real systems.

Hybrid BFT. A common belief is that there is no one-size-fits-all BFT, i.e., each protocol has its own trade-

offs. The motivation for hybrid BFT is to use multiple protocols and switch between them to achieve the best
performance and security guarantees according to the network situations, e.g., the number of failures in the

system [37, 97, 118, 133, 186]. In those cases when failures are rare, the system can use a cheap protocol to

guarantee great performance. When failures occur where a transaction cannot be delivered, the system then

switches to a more expensive one to guarantee correctness. Aliph [118] proposes the first formal framework

that switches between different protocols to provide a safe and resilient approach for replicas to transfer the

system state from the previous protocol instance to the next one. In this way, even during a protocol switch,

correct replicas are still consistent. CheapBFT [133] proposes a lightweight protocol using trusted hardware

that tolerates 𝑓 failures using 𝑛 ≥ 𝑓 + 1 replicas. It falls back to MinBFT [218] under certain conditions which

requires 𝑛 ≥ 2𝑓 + 1 replicas. ADAPT [37] utilizes a similar idea. It further includes a run-time evaluation process

powered by machine learning to evaluate the protocol characteristics and performance. The evaluation process

can then predict the best protocol to use. Turtle consensus [186] and cost-sensitive consensus [97] take a different
approach inspired by having moving target defense (MTD). Turtle consensus switches between protocols epoch

by epoch to prevent a denial-of-service attack. Cost-sensitive consensus assumes an intrusion detection system

(IDS) that oversees the system. It builds a software component and a formalized cost model that takes signals

from the IDS to evaluate the cost for running different BFT protocols. The cost represents how vulnerable the

current protocol is according to the network/system condition and whether the system should switch to a new

one. The IDS does not have to be trusted for the system to be correct.

▷ Remark. Hybrid BFT provides a flexible interface to switch between different protocols, which balances

between the performance and security trade-offs. Although such approaches are not known to be implemented

in any real system, hybrid BFT allows one to reuse different protocol implementations and potentially build a

robust system. The major challenge is two-fold. On the one hand, switching between protocols incurs additional

latency. On the other hand, it is questionable whether the selected protocol is indeed the best according to the
system conditions.
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Chain-based BFT. Different from broadcast-based BFT, chain-based replication organizes replicas in a chain [98,

215]. A replica in the middle of the chain only communicates with the previous node (predecessor) and the

subsequent node (successor) of the chain. The head (first replica in the chain) only communicates with its

successor and the tail (last replica in the chain) only communicates with its predecessor. Such a communication

pattern was previously studied in the crash failure model [170, 216] and later on extended to the Byzantine failure

model. Aliph [118] also has a chain-based subprotocol that works only when all replicas are correct, as shown

in Fig. 3(a). The major benefit of such a communication pattern is that every replica only communicates with

at most two other replicas, so the protocol has 𝑂 (𝑛) message complexity. The major challenge is that in the

presence of even one replica failure, the chain breaks and replicas cannot reach an agreement. Shuttle [215]

solves the problem using an oracle called Olympus. Olympus can be viewed as a trusted service that generates

configurations for the system. When failures occur in the current chain, Olympus will issue a new configuration

and replace all replicas in the current chain. Since Olympus becomes a single point of failure, it can be made

replicated to achieve fault tolerance. In comparison, BChain [98] takes a different approach that detects failures

in a distributed way, the normal-case operation of which is shown in Fig. 3(b). Specifically, the first 2𝑓 + 1 out of

𝑛 (assuming 𝑛 = 3𝑓 + 1) replicas form a chain. The rest 𝑓 replicas serve as backups and only learn the results from

the first 2𝑓 + 1 replicas passively in the normal-case operation. If the chain breaks where replicas cannot receive

certain messages before they time out, replicas can ‘suspect’ each other. As a result, some replicas will be moved

to the backups and certain replicas from the backups will be moved back to the chain. Replicas in the backup

group will be recovered in the hope that the new replicas moved from backups to the chain are correct. Therefore,

BChain is the only known robust chain-based BFT protocol. A variant of it has been used in Hyperledger Iroha

permissioned blockchain [7].

▷ Remark. Compared with broadcast-based BFT, chain-based BFT enjoys the benefits of high throughput and

great server scalability at the cost of higher latency. The latency can be compensated using the pipelining pattern.

Similar to the pipelining approach used by broadcast-based BFT, a replica can start processing new requests before

the previous one has been delivered. Since the message/communication complexity for chain-based replication

is already lower than the broadcast-based BFT, the pipelining pattern makes it achieve an even higher gain for

throughput improvement. The major challenge for chain-based replication is that failures can easily break the

normal-case operation and replicas need to stop processing client requests before the chain stabilizes again.

Therefore, such approaches work best when failures are less frequent.
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(a) Normal-case operation of Aliph Chain [118], which requires

all replicas to be correct.
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(b) Normal-case operation of BChain [98].

Fig. 3. Normal-case operation of chain-based BFT.

Trusted hardware-based BFT. The motivation for using trusted hardware is to shift some tasks from the

replicas (software) to trusted hardware. This has the effect of either preventing or monitoring equivocation [75]
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of replicas so they are ‘forced’ to behave correctly or act as crash faulty nodes. The benefit is that the system can

tolerate 𝑓 failures using fewer replicas. A list of the available approaches is summarized in Table 2.

Correia, Neves, and Verissimo (CNV) proposed a component named Trusted Multicast Ordering Service (TMO)

based on Trusted Timely Computing Base (TTCB) [78], a prior existing concept [81]. TMO (or TTCB) serves as an

ordering service which authenticates the messages and directly multicasts the messages in the communication

channels. Since malicious replicas do not have control over the channel, they cannot equivocate and therefore

cannot behave arbitrarily. The faulty nodes, however, can become silent and act as crash failures. The system is

then similar to a crash fault-tolerant one, which can tolerate 𝑓 Byzantine failures using at least 2𝑓 + 1 replicas.

A2M [72] introduces Attested Append-Only Memory, and implements a local counter at each replica that records

the messages transmitted in the protocol. Functionally, A2M acts as a message authenticator and a reference

monitor. Similar to TMO, A2M also enforces that a replica only sends consistent messages to other replicas.

TrInc [153] and MinBFT/MinZyzzyva [218] improve upon A2M by focusing upon the design of the trusted

hardware in terms of storage space and design simplicity. CheapBFT proposes Counter Assignment Service in
Hardware (CASH), an even simpler version of A2M. CheapBFT also includes CheapTiny, a lightweight protocol

that only requires 𝑓 + 1 replicas to tolerate 𝑓 Byzantine failures. Specifically, the system still has 2𝑓 + 1 replicas

and 𝑓 of them are inactive during the normal-case operation. If the 𝑓 + 1 active replicas fail to reach an agreement,

CheapBFT falls back to MinBFT to achieve correctness. FastBFT [162] optimizes the broadcast-based workflow of

such protocols by creating a hierarchy of replicas. It builds a Trusted Execution Environment (TEE) based on a

trusted component. Similar to other approaches, the TEE has a monotonically increasing counter to mark new

messages and make replicas only send consistent messages. FastBFT also uses TEE for secret sharing between

different hierarchies of replicas to authenticate the messages. Therefore, FastBFT can be viewed as a more scalable

trusted hardware-based protocol compared with prior works.

ByzID [96] uses a slightly different approach. It builds a trusted component from the concept of the specification-

based intrusion detection system (IDS). The component includes several specifications that define the correct
behavior of each replica. Different from other approaches, the trusted hardware passively monitors the replicas

instead of actively participating in the protocols. When a replica violates the specifications, the IDS generates

an alert and triggers replica recovery. This has the benefit that replicas can continue processing even when the

IDS fails. When the IDS fails, the system is correct only when at most 𝑓 faulty replicas crash since the system

requires 2𝑓 + 1 replicas to tolerate 𝑓 failures.

Protocol 𝑛 Trusted hardware type/name Functions

CNV [78] 2𝑓 + 1 Trusted Multicast Ordering Service (TMO) Authenicated channel

A2M [72] 2𝑓 + 1 Attested append-only memory Message authentication and reference monitor

TrInc [153] 2𝑓 + 1 Trusted incrementer Message authentication and reference monitor

MinBFT [218] 2𝑓 + 1 Unique Sequential Identifier Generator(USIG) Message authentication and reference monitor

CheapBFT [133] 𝑓 + 1 Counter Assignment Service in Hardware (CASH) Message authentication and reference monitor

ByzID [96] 2𝑓 + 1 Specification-based IDS Monitoring the message flow

FastBFT [162] 2𝑓 + 1 Trusted Execution Environment (TEE) Secret sharing and reference monitor

Table 2. Comparison of trusted hardware-based BFT.

▷ Remark. Trusted hardware-based approaches can greatly enhance the resilience of the replicas, making a

BFT protocol more performant, as well as greatly simplified and therefore more similar to a crash fault-tolerant

one. The cost of tolerating failures can also be reduced from 3𝑓 + 1 to 2𝑓 + 1. The major drawback, however,

is that the trusted hardware has to be reliable since most approaches require the trusted hardware to actively

participate in the protocols. There is always a debate on how many tasks should be shifted from the software to
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the trusted hardware. Since all known TEEs have their vulnerabilities, implementing a fully-fledged BFT protocol

cannot guarantee system correctness. Therefore, a common belief is that the functions implemented at the trusted

hardware should be lightweight and the protocol should not rely on the trusted hardware to make progress.

Although to the best of our knowledge none of these protocols have been implemented in real systems, certain

blockchain systems use a similar idea, e.g., Proof-of-Elapsed-Time (PoET).

REQUEST
Client

Local Site

FORWARD
ASSIGN-

SEQUENCE

Leader Site

Site

ACKNOWLEDGE REPLY

Fig. 4. Normal-case operation of Steward protocol [28].

Parallel BFT. BFT (or even CFT) is considered slow since it achieves a global total order of client requests.

Therefore, the motivation for parallel BFT is to relax the requirement to order and execute the client requests one

after the other to speed up performance. Specifically, the approaches usually run concurrent BFT instances to

order and execute non-overlapping operations [32, 134, 145, 154]. CBASE protocol separates BFT agreement from

execution [145]. It adds a parallelizer that uses application-related rules to identify requests that can be executed

in parallel. This allows parallel execution of requests without compromising the correctness of the protocols (i.e.,

safety). In comparison, Eve uses an execute-verify approach [134]. The primary replica first groups requests into

batches. Replicas then run a mixer to partition each batch and then execute the requests in parallel. Meanwhile,

replicas run BFT to order the requests. After replicas reach an agreement on the order of all batches, replicas

verify whether the results can be finalized by learning the results. SAREK is a parallel BFT approach that divides

replica states into partitions [154]. Each replica runs multiple BFT instances, each of which orders request for

one partition. SAREK provides an approach that deals with both operations that involve only a single partition

operation and those that involve multiple partitions to achieve the total order of client requests. Different from

these approaches where the purpose is to enhance the performance, RBFT [32] utilizes parallel instances to solve

the performance attack of PBFT where faulty replicas can collude to slow down the system [27, 76]. RBFT runs

𝑓 + 1 PBFT instances in parallel and one of them becomes the master instance. The master instance is the only

one that executes the requests. If the master instance performs slower than other instances, a new instance will

be selected.

▷ Remark. The concept of parallel BFT is not only limited to BFT, but is also widely studied in CFT [25, 168,

169, 200]. It has also recently been used in permissionless blockchains [231]. The approaches utilize modern

multi-core computing architecture to enhance system performance. The major limitation is that the parallel

execution of requests is dependent on the underlying application. Therefore, the parallelizer becomes the key to

the correctness of the entire system. Furthermore, previous experience of deploying parallel CFT protocols in

real systems shows that the parallel pattern may not achieve the expected performance [67]. Therefore, whether

parallel BFT approaches are practical in real systems is yet to be discovered.

Scalable BFT. Scalability is known to be a major challenge for blockchains [219], and this type of challenge is

different for permissioned and permissionless blockchains. BFT has high client scalability as the protocols have
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high system throughput. BFT, however, suffers from low server scalability due to its high message complexity. In

other words, BFT protocols usually cannot scale to a large number of replicas. Several works explore enhancing

the server scalability of BFT protocols and fall into one are of two categories: hierarchical BFT and partition-based
BFT. Both types of approaches reduce all-to-all communication to enhance the performance, a common approach

in distributed systems [57, 86].

Hierarchical BFT creates a logical hierarchy of replicas. Such protocols usually involve a few phases of different

BFT instances at different hierarchies [28, 69, 115, 127, 140, 162]. For instance, Steward [28] organizes replicas

into several groups called sites. The normal-case operation is shown in Fig. 4. Each site has 𝑛 ≥ 3𝑓 + 1 replicas

that tolerate 𝑓 Byzantine replicas. One site serves as a leader site, which can be changed if the current leader

site fails. Every client contacts a local site to send a request. The client request is forwarded to the leader site if

the local site is not the leader site. The leader site runs a BFT protocol (specifically PBFT) and assigns a global

order to the request. The order is sent to all sites using a Paxos-like protocol. Finally, all replicas adopt the

global order. The underlying idea is that each site itself is fault-tolerant so each site can logically act as a replica
that may fail by crashing at the global level. To make sure other sites can validate the messages generated by a

site, replicas in the site have to collectively generate message authentication using threshold signatures. At the

global level, sites can then run a crash fault-tolerant protocol to broadcast messages. Since at the global level,

only site representatives need to communicate with each other, this pattern can greatly reduce the all-to-all

communication of conventional broadcast-based protocols and enhance the server scalability.

Partition-based BFT divides replicas into several parallel groups/partitions [46, 104, 147, 158, 198]. This approach

could be extremely effective in applications such as file systems and storage systems [18, 82, 167, 175]. A few

hybrid blockchains also utilize this idea [143, 232]. Performance can be greatly improved if write requests can be

executed concurrently by different partitions. The major challenge for this approach is conflict resolution, such as

when a write request may access multiple partitions [46, 158]. Concurrent access may degrade the performance

since different partitions need to frequently resolve conflicts using expensive procedures. This is known to be a

major issue in both the crash failure model [192] and the Byzantine model.

Several other approaches are designed with the motivation in enhancing the scalability of broadcast-based

BFT [119, 197, 212]. SBFT [119] optimizes the workflow of PBFT. Specifically, instead of having all replicas

exchange messages with each other in the second and the third step of PBFT, SBFT assigns one or a few replicas

that serve as collector that collects signatures from the replicas and distribute the aggregated signatures to the

replicas. This can reduce the all-to-all communication and enhance server scalability. Mir-BFT [212] uses a

different approach that utilizes parallel computing to enhance performance. Specifically, Mir-BFT allows replicas

to run parallel PBFT instances to order different client requests at the same time. To avoid the potential conflict

of the client requests ordered by different instances, Mir-BFT uses a rotating assignment of the hash space

to partition client requests at different instances. Therefore, Mir-BFT can be viewed as a parallel version of

partition-based BFT. Snowball protocol uses a gossip-based mechanism based upon probabilistic broadcast [197].

Specifically, each node only sends a message to a fraction of the replicas instead of all other replicas (a common

communication pattern in BFT protocols). This pattern greatly reduces the communication complexity to enhance

the throughput and enables the Snowball protocol to guarantee reliable broadcast with high probability.

▷ Remark. Scalable BFT reduces the amount of all-to-all communication to enhance server scalability. The major

challenge for such approaches is that they essentially use a slightly different failure model, i.e., each group/site

has to be fault-tolerant and has a strict requirement on the fraction of failures. For instance, Steward assumes

that each site of 𝑛 replicas is fault-tolerant and cannot have more than ⌊𝑛−1
3
⌋ faulty replicas. This is different

than assuming the entire system cannot have more than one-third faulty replicas.

Others. XFT is a recent work that improves the resilience of classic PBFT protocols, i.e., it requires 𝑛 ≥ 2𝑓 + 1

instead of 𝑛 ≥ 3𝑓 + 1. Slightly different from other BFT protocols, XFT requires that the majority of the replicas
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are not partitioned, i.e., the protocol does not tolerate network partition. TwinBFT [91] presents an approach that

also reduces the requirement of 𝑛 to at least 2𝑓 + 1. Specifically, it builds two virtual machines on each physical

machine (replica). The two virtual machines monitor each other so that even one fails, the other one can still

guarantee that only consistent messages are sent.
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Fig. 5. Different approaches that separate the roles of the nodes.

Several previous efforts separate the roles in BFT for different purposes [31, 56, 102, 215, 223, 229]. Wang

et al. [223], Cachin et al. [31, 56], Duan et al. [102], and Yin et al. [229] use an architecture that separates the

agreement of client requests from the execution of the operations. A simple architecture is illustrated in Fig. 5(a).

The agreement cluster has at least 3𝑓 + 1 nodes to tolerate 𝑓 Byzantine failures. The execution cluster has at least

2𝑡 + 1 nodes that tolerate 𝑡 failures. The client request is first sent to the agreement cluster and the nodes assign

an order to the request. Then the request is sent to the execution cluster where the nodes execute the client

requests according to the order. Such an architecture separates the data from the agreement, which has benefits

such as better performance and modularity [224]. The architecture was further extended by Duan et al. [102] and

Yin et al. [229] to achieve confidentiality. The approaches add a privay firewall that filters messages between

the agreement cluster and the execution cluster, as illustrated in Fig. 5(b). This can preserve confidentiality

where even corrupted replicas cannot learn the contents in the client requests. The Shuttle protocol, previously

mentioned in chain-based BFT, also uses a similar architecture via the configuration oracle [215], as illustrated in

Fig. 5(c). The role of the oracle is to obtain the data copies from the agreement cluster and sign the data as proof

during reconfiguration. In this way, the nodes in the agreement cluster could be reconfigured and new nodes can

directly obtain the stable data from the oracle.

Weighted BFT protocols have been proposed to reduce quorum size and enhance performance [42, 210]. Weights

are assigned to the replicas so the quorum size is determined by the weights of replicas instead of the number of

replicas. This can reduce the number of messages each replica needs to collect so as to reduce latency and enhance

throughput. The major challenge is how to calculate the weights. WHEAT [210] uses a voting-based approach that

allows replicas to collaboratively determine the weights. In AWARE [42] each replica continuously monitors other

replicas’ communication link latencies. The distribution of weights is then calculated and refreshed periodically.

Similar concepts have been used in other types of BFT as well. For instance, Algorand [117] utilizes weights as the

coins owned by replicas as part of the protocol. Several permissionless blockchains (e.g., Proof-of-Authority [88])

use voting-based approaches to select a group of replicas to run the BFT protocols. FairLedger builds a BFT

protocol inspired by blockchain in financial applications [152]. Specifically, it achieves fairness where each
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participant gets an equal opportunity to append transactions to the ledger. It builds an abstraction with a failure

detector, which defines the rational behavior of replicas and allows replicas to remove faulty replicas from the

system.

3.2 BFT in asynchronous model
The FLP theorem states that in an asynchronous environment, a consensus protocol may never achieve correct-

ness [108]. In other words, partially synchronous or synchronous protocols may achieve zero throughput against

an adversarial asynchronous network scheduler. Randomized asynchronous protocols solve the problem using a

probabilistic approach to ensure that the protocols terminate with the probability of 1 [40]. The protocols usually

involve a common coin, which is collectively generated by the replicas. Practically, the common coin protocol

can be generated using threshold cryptography [58]. As a result, randomized asynchronous BFT protocols are

robust against timing, performance, and denial-of-service (DoS) attacks. Therefore, asynchronous protocols are

(arguably) the most appropriate solutions for blockchains, especially mission-critical applications.

Reliable Broadcast Echo Broadcast Simple Broadcast

Binary Broadcast

Multi-valued Broadcast

Vector Broadcast Atomic Broadcast

Fig. 6. The asynchronous protocol stack [57, 79, 180].

Consensus stack. Randomized asynchronous Byzantine fault-tolerant protocols can be built upon each other [57,

79, 180]. Conventionally, at the lowest level are two fundamental primitives: reliable broadcast (e.g., Bracha’s
broadcast [49]) and echo broadcast (a two-step version of Bracha’s broadcast). Since several recent binary consensus
protocols greatly simplify previous ones, we further add simple broadcast to the bottom of the stack, as illustrated

in Fig. 6. In a simple broadcast, one replica simply broadcasts a message to all other replicas, which may include

message authentication. Binary consensus can be built on top of them, which is the most fundamental primitive

in the asynchronous protocol stack. Binary consensus allows each replica to have its own binary input, and agree

on a single binary output. Multivalued consensus allows replicas to agree on a value of arbitrary length. Vector
consensus is used to agree on a vector of values, each of which has an arbitrary length. Finally, atomic broadcast
implements a total ordering service, which is also known as BFT SMR for building blockchains. For simplicity,

we name them asynchronous BFT protocols.

Randomized asynchronous consensus frameworks.Multiple asynchronous BFT protocols have been pro-

posed. Correia et al. [79] show that atomic broadcast can be built on top of multivalued consensus, which - in

turn - can be built on top of binary consensus. All such protocols can be built using either reliable broadcast

or echo broadcast [179, 180]. Although such a protocol might not be practical due to the long latency and low

throughput, it presents that the consensus abstractions can be reduced from one to another. Specifically, it shows

that all known asynchronous BFT primitives can be reduced to binary consensus.

The ACS (asynchronous common subset) framework is by far the most (and arguably the only) practical

framework for asynchronous BFT. Specifically, in each epoch, each replica proposes a subset of transactions

in its pending transaction pool. At the end of the epoch, correct replicas deliver the union of the transactions

of the agreed-upon ones and assign them a deterministic order for the transactions. The framework was used
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Fig. 7. The ACS workflow [41, 58, 60, 101, 120, 160, 166, 178]. The figure shows a typical workflow although different protocols
use different variants. The ABA protocol might be different in different protocols.

by Ben-Or et al. [41]. Recently, it has been improved and made practical with implementation and extensive

evaluation by HoneyBadgerBFT [178] and BEAT [101]. HoneyBadgerBFT and BEAT design and implement

several optimizations to reduce the communication complexity and the number of steps required in the system

including a lightweight asynchronous binary agreement (ABA) protocol MMR [181]. The MMR has only two

to three steps in each round which is more practical than other ABA approaches [43, 49, 50, 59, 64, 208, 214].

The MMR protocol, however, was found to have termination issues due to the underlying assumption about the

common coin [2], which was solved in Cobalt by having one more step in each round [166].

The ACS framework used by HoneyBadgerBFT and BEAT is shown in Fig. 7 (with threshold encryption

ignored). The protocols proceed in epochs. Each epoch consists of two phases: a reliable broadcast (RBC) phase

and an ABA phase. In the RBC phase, each replica selects a subset of pending transactions that form a proposal.

Each replica then uses RBC to broadcast the transactions. In the ABA phase, replicas run 𝑛 parallel ABA instances,

the 𝑖-th of which is used to agree on whether the proposal from replica 𝑝𝑖 has been delivered in the RBC phase.

For instance, as illustrated Fig. 7, each replica 𝑝𝑖 (𝑖 ∈ [0..3]) proposes a transaction 𝑡𝑥𝑖 (or a batch of transaction)

and uses RBC to broadcast the transaction. When a replica delivers value from an RBC instance 𝑗 ∈ [0..3], it
inputs 1 to the 𝑗-th ABA instance. HoneyBadgerBFT and BEAT follow Ben-Or et al. [41] and ask each replica to

abstain from proposing 0 until 𝑛 − 𝑓 ABA instances are delivered. This is used to guarantee system throughput.

EPIC [160] further enhanced the framework and presented an approach to achieve adaptive security. It has been

shown that with little cost, asynchronous BFT with adaptive security can be made practical. Instead of using

RBC and ABA with optimal resilience, MiB [161] (BFT with more replicas) chooses to utilize protocols requiring

𝑛 ≥ 5𝑓 + 1 or 𝑛 ≥ 7𝑓 + 1. It has been shown that, although more replicas are involved, the ACS framework can be

made practical due to the optimization of the underlying components.

CKPS [58] and SINTRA [60] built a variant that relies on multi-valued broadcast, to be specific multi-valued

binary agreement (MVBA). In particular, all replicas first broadcast their proposals with digital signatures. After

each replica collects a quorum of signed proposals, they run MVBA. The MVBA consists of 𝑛 parallel consistent

broadcast (CBC) instances (which can be viewed as reliable broadcast with 𝑂 (𝑛) complexity) and an ABA phase.

Each time, one ABA instance is triggered. The ABA instances, however, are triggered sequentially until one

terminates. Dumbo (Dumbo2 to be specific) uses MVBA in a different way [120]. In Dumbo2, replicas first run

a variant of RBC named PRBC, where the delivery of each request is associated with a valid proof (threshold

signature). The proof and the index of delivered requests are used as input for MVBA. Dumbo shows that the

scalability of asynchronous BFT (HoneyBadgerBFT) can be greatly improved using such a workflow.

Abraham, Malkhi, and Spiegelman (AMS) proposed another framework that reduces the message complexity

(not communication complexity) of ACS from 𝑂 (𝑛3) to 𝑂 (𝑛2) [24]. As shown in Fig. 8, replicas run 𝑛 parallel

instances each of which has a similar workflow with HotStuff [230]. In other words, every replica also proposes
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Fig. 8. The AMS workflow [24].

a subset of pending transactions. After a threshold of the instances has been completed, replicas collectively

generate a common coin to select one of the instances, and the corresponding transaction(s) will be broadcast and

delivered by the replicas. Since HotStuff has𝑂 (𝑛) message complexity, running 𝑛 instances in parallel makes such

a framework achieve 𝑂 (𝑛2) message complexity. The framework, however, has very long latency and inefficient

use of the network bandwidth. Specifically, although all replicas can propose in parallel, only the transaction(s)

proposed by one replica will be delivered. The framework might therefore not be practical in real systems.

Randomized asynchronous protocols all use a common coin which can be realized using threshold cryptography

in practice [48, 59, 129, 204, 205]. An important concept for threshold cryptography is whether such protocols

are adaptively secure, i.e., they can handle adversaries that can adaptively choose ‘which nodes’ they want to

corrupt. BFT protocols are therefore defined accordingly to achieve adaptive security [159, 164].

A recent work ACE shows a generic approach that can ‘convert’ a partially synchronous BFT protocol into an

asynchronous one [211]. It uses a similar concept to AMS. Specifically, every replica can propose transactions

by running parallel instances of a partially synchronous protocol. After a fraction of the instances has been

completed, one instance is selected by the replicas and the corresponding transactions can be delivered. Since the

approach is similar to AMS, it also has inefficient use of the network bandwidth.

Two other works are worth mentioning. Algorand [117] is a cryptocurrency that uses randomized BFT protocol

as the core consensus mechanism. We ignore many details of the protocol and focus on the consensus mechanism

which is the focus of this article. Algorand uses a workflow that is similar to ACS as it has two phases: reduction

and binary agreement (BA). Reduction reduces the proposal of transactions to a binary decision and the BA is

used to agree on whether the proposal has been received. Both the reduction phase and the BA phase are different

from those used in ACS because in the reduction phase, every replica directly proposes a block of transactions

by broadcasting the transactions. Other replicas can vote for the proposed transactions. If the number of votes

for a block exceeds a certain threshold, the BA phase will terminate with value 1 and the transactions will be

delivered. Otherwise, the BA will use the value of the common coin as output. Both the reduction phase and

BA phase heavily rely on timers and timely messages to ensure correctness and termination. Therefore, the

consensus of Algorand, despite using a randomized protocol, still assumes partially synchrony. DBFT [83] also

extends the ACS framework by adding a weak coordinator which makes replicas complete the protocol faster.
The resulting protocol assumes partially synchrony. Therefore, DBFT is not an asynchronous consensus, despite

that it is randomized.

Certain asynchronous protocols are being implemented or used in industrial systems. For instance, HoneyBad-

gerBFT is being adopted as part of the solution in Ethereum blockchain [12]. DBFT, a randomized protocol that

assumes partially synchrony, is known as the protocol for the Red Belly Blockchain [13].

▷ Remark. Randomized asynchronous BFT protocols are known to address the FLP impossibility at the cost of

higher message complexity. The practical asynchronous protocols such as HoneyBadgerBFT and BEAT, however,

have shown that such protocols can also achieve high throughput and low latency. This is because asynchronous
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protocols are leaderless where replicas can propose transactions in parallel. If non-overlapped transactions can be

proposed by the replicas, such protocols can achieve high throughput to be used in practice, and because they are

usually leaderless there is no need for a view change subprotocol. Therefore, the entire system implementation

can be more lightweight than partially synchronous protocols.

4 BFT IN NON-PERMISSIONED BLOCKCHAINS
Besides permissioned blockchains, BFT can also be used for permissionless blockchains as well to enhance

scalability and performance. These blockchains are also known as hybrid blockchains. Hybrid blockchains

combine the features of permissionless and permissioned blockchains to enjoy the benefits of both types of

blockchains. Most hybrid blockchains utilize PoW and its variants to build membership for the system and other

approaches to enhance the system performance. PoW based consensus is known to prevent sybil attacks which

can be used to build a permissionless blockchain. Specifically, to launch a sybil attack, a malicious party creates

multiple identities in the blockchain to cause security and correctness issues. Therefore, it is unique in building

an open blockchain. The drawback is that PoW is expensive. Therefore, PoW based blockchains suffer from low

client scalability and performance. In contrast, the use of other approaches can be used to greatly enhance the

system performance.

The integration of PoW and Proof-of-Stake (PoS) is an example of hybrid blockchains [54, 87, 136, 138]. In

particular, the voting power of a node is determined in part by the amount of coins it holds. Another example is

directed acyclic graph (DAG) based blockchains [36, 207]. In this type of blockchains, high forking is allowed

where a block does not have to be proposed by the descendants of existing blocks. As a result, the throughput

can be greatly enhanced.

Another line of hybrid blockchains utilizes PoW and BFT protocols. BFT protocols enjoy the benefits of great

performance. The problem is that it can only be used in the permissioned setting where replicas have to know

the identities of each other. Using PoW (or its variants) to select a group of replicas for running BFT can therefore

solve the problem. Several hybrid blockchains combine PoW and BFT to build an open blockchain while enhancing

the performance and security of permissionless blockchains [22, 89, 105, 141, 143, 165, 190, 232].

In this section, we discuss a few representative hybrid blockchains, most of which combine PoW and BFT. We

discuss their generic workflow, the design motivation, with a focus on the use of BFT in such blockchains and

discuss the pain points. A list of the hybrid blockchains is summarized in Table 3.

Protocol Membership Rotating committee Consensus Fork Sharding Cross-Shard Tx

Bitcoin-NG [105] PoW Continuous Single node Yes No NA

PeerCensus [89] PoW Continuous BFT No No NA

Hybrid Consensus [190] PoW Periodic BFT No No NA

ByzCoin [141] PoW Continuous BFT No No NA

Solida [22] PoW Periodic BFT No No NA

Elastico [165] PoW No BFT No Yes NA

Omniledger [143] PoW Continuous BFT No Yes Yes

RapidChain [232] PoW Periodic BFT No Yes Yes

Thunderella [191] PoW Optional BFT Yes No NA

Algorand [117] Public randomness Periodic BFT No No NA

Table 3. Comparison of hybrid blockchains.

Hybrid blockchains. The Bitcoin-NG [105] hybrid blockchain extends PoW based consensus by allowing each

replica to propose multiple blocks of transactions. Since mining incurs high latency, allowing each replica to
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propose multiple blocks can greatly enhance the performance. Specifically, Bitcoin-NG has two types of blocks:

key blocks and microblocks. Microblocks are the blocks of client transactions just like those in other types of

blockchains. Key blocks use PoW to select replicas and each replica becomes a leader which can propose a fixed

number of microblocks. The major challenge Bitcoin-NG solves is that PoW (key block mining) may have forks

and a faulty leader may create forks of microblocks as well. Bitcoin-NG solves the key block forks by simply asking

replicas to wait until the current chain of key blocks is the longest. To solve the microblock forks, the transaction

fee is split between the current leader and the next leader, making replicas have the incentive to maintain the

only longest chain of microblocks. Although Bitcoin-NG does not use BFT in the design, the use of BFT in hybrid

blockchain arises from it. In particular, hybrid blockchains switch between the consensus in permissionless

blockchains to have a large number of permissionless members and BFT to enjoy better performance.

The majority of hybrid blockchains combine PoW and BFT [22, 89, 141, 143, 190, 191]. PeerCensus [89] was

the first such protocol in this category. It uses PoW to select a number of replicas and form a committee. The
committee members run a BFT protocol (PBFT to be specific) to propose new blocks of transactions. Newmembers

could be added to the committee through PoW and old members will leave the committee. Unfortunately, the

reconfiguration of committee members was not clearly defined and a better approach has been proposed by

hybrid consensus protocol [190] (which is different from the hybrid consensus category mentioned previously in

Sec. 3.1). Specifically, hybrid consensus proposes to either use Fruitchain [189] (a variant of PoW) or PoW to select

replicas and form a committee. The committee will be rotated periodically so that each committee runs a DailyBFT

protocol (PBFT) before the next committee is selected. Solida [22] further enhanced the reconfiguration of the

committee. Specifically, Solida formalizes the reconfiguration process in such protocols. Furthermore, it ensures

correctness under the assumption that the adversary does not control more than one-third computational (mining)

power. Thunderella provides different models where the committee members can be static or reconfigurable [191].

It combines a fast and asynchronous path with a slow synchronous path. In the fast path, a simple and almost

optimistic execution is employed. When failures occur, a slow path is used, the motivation of which is similar to

that in hybrid BFT.

Elastico [165] and RapidChain [232] improve scalability through the use of a sharding/parallel transaction

processing. Both use the unspent transaction output (UTXO) model to create shards where UTXO is an approach

used in Bitcoin. It allows each replica to calculate locally an Output for certain Input where the Input specifies
the source of the coin in a transaction and a valid proof (digital signature). The Input range can, therefore, be
used to create multiple shards that are not overlapped. Elastico [165] creates an overlay with a fixed number of

committees each of which proposes transactions only for the corresponding shard. After the committees propose

transactions in parallel, the proposed orders are then sent to a final committee to validate and merge the results.

Elastico does not specifically address the cross-shard verification issue where the verification of a transaction

involves more than one shard. RapidChain [232] provides a novel solution and an inter-committee routing

protocol to solve the problem. Specifically, the cross-shard committees process the transaction in a pipeline so as

to reduce inter-committee communication and enhance the system performance. Besides, RapidChain further

provides several optimizations and shows experimentally that it outperforms all prior hybrid blockchains.

Note that ByzCoin [141] and Omniledger [143] are two other works that fall into the same category. Both

protocols rely on a variant of PBFT that uses Cosi [213] for authentication. Cosi was found to have serious

security issues and solutions have been provided accordingly [95]. Besides the BFT, ByzCoin can be viewed as a

variant of PeerCensus and Omniledger is a variant of Elastico.

Algorand [117] can also be viewed as a hybrid blockchain that is also a cryptocurrency. Although it uses

BFT-based consensus as the only consensus mechanism, it builds a permissionless blockchain where anyone can

participate. To prevent sybil attacks, Algorand assigns weights to each user according to the number of coins in

the wallet. In other words, Algorand is a cryptocurrency using consensus in the hybrid blockchains category.
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▷ Remark. A fraction of hybrid blockchains are provably secure permissionless blockchains while some system

do not have security proofs. It has been shown that such blockchains can greatly enhance the client scalability

and throughput of permissionless blockchains. There are several major challenges. First, PoW relies on the

synchronous network and the CTA model to achieve correctness. The issues brought by PoW consensus (e.g.,

selfish mining) cannot be solved in hybrid blockchains. Second, for a BFT-based hybrid blockchain to be secure,

the committee has to have a certain size. In other words, each committee cannot have more than one-third faulty

members for the BFT protocol to be correct. For instance, it is shown in Elastico that each committee has to have

600 members so that something bad (a committee has more than one-third faulty replicas) happens once every 1

million epochs. Although the requirements on committee size can be lowered, a typical BFT protocol cannot

scale to such a large number of replicas. Therefore, it is still not clear how to achieve the sweet spot of client

scalability and server scalability, especially in a permissionless blockchain [219]. Third, due to the design of the

consensus approaches, several hybrid blockchains can only be cryptocurrencies (or the transactions have to be

related to certain cryptocurrencies) instead of general-purpose blockchains due to their design.

5 USE CASES
Blockchains have been explored or used in different domains such as finance, biomedical, supply chain manage-

ment, and governmental applications, some of which show blockchains can make a difference in the real world.

We explore how it has been used to help give access to unbankable people; stop food-borne outbreaks earlier;

improve the quality of health care; and make changes to how we govern. In this section, we review the use

cases that are being piloted or explored globally, categorize them according to the industry. Note that extensive

research efforts have been made to explore use cases for blockchains [29, 74, 121, 123, 137, 176, 201], some of

which might potentially be used in the future. In this section, we only review a few representative use cases

that are being piloted or deployed in real-world applications. Our purpose is not to advocate any blockchain

systems or to provide an exhaustive review of the use cases, but to show the use cases and summarize how

blockchains have been used in the real world. Understanding the workload and the needs of using a system

(e.g., read, write, append) is a key component in the design of any systems [67, 116]. Therefore, the discussion of

real-world use cases may greatly benefit researchers in the design of protocols and benefit decision makers to

select the appropriate protocols.

5.1 Financial Applications
Blockchains became famous as cryptocurrencies, as they provide decentralized, trustless environments for people

to exchange currencies with low transaction fees and relatively quick finality. Therefore, financial applications are

so far still one major focus of developers and decision-makers. For instance, according to a World Bank survey, in

Philippines, only 42% of Filipinos aged 15 or older have a bank account due to a combination of factors [90, 234].

One significant driver is that the rural settings of the country limit their ability to obtain one. If those banks

get the infrastructure they need, then they can provide Filipinos with the ability to send and receive money,

thereby reducing poverty and improving lives. The Filipino government has adopted an Ethereum-based solution

for about 80 rural banks, built using Infrastructure as a Service (IaaS) from Amazon Web Service (AWS) and

Microsoft Azure.

There are numerous financial use cases such as asset management, insurance claim processing, etc. For instance,

in asset management, blockchains can be used to simplify the trade processes within asset management, prevent

data redundancy at different roles of people in the process, and reduce the risk for trading [70].

Cross-border payments are becoming another great use case for blockchains. For instance, several major

trading companies such as Ripple Labs Inc. are exploring the use of blockchains, RippleNet [14], for managing

trade finance and unlock new business models. The idea is to use blockchains to enable the tokenization of

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2021.



BFT in Blockchains: From Protocols to Use Cases • 1:21

existing documents, letters of credit, and more [114, 139, 156, 226]. Furthermore, general purposed blockchains

might be used for cross-border payments.

Other financial application areas include anti-money laundering (AML), insurance, and regulatory compliance.

The Financial Action Task Force (FATF) issued guidance on virtual assets, anti-money laundering, and counter-

terrorist financing regulation [73, 132, 148, 195]. It has been shown that the existing cloud-based blockchain

solutions of AML are effective in balancing the threats and opportunities. Another application is the insurance

industry where insurance policies can be enforced through smart contracts. For example, OpenIDL [10], a

network built on the IBM Blockchain Platform, is automating insurance regulatory reporting and streamlining

compliance requirements. This allows insurance claims to be recorded and validated transparently, which could

eliminate invalid claims. Similarly, accounting and auditioning for regulatory can be performed via blockchains

as well [84, 142]. Any record updates via blockchains can be made immediately available to regulators and

businesses, preventing human errors and ensuring the integrity of records.

▷ Remark. Most of these financial use cases utilize the cryptocurrency nature of blockchains. Financial applica-

tions, however, do not necessarily have to rely on cryptocurrencies. Instead, general-purpose blockchains can

also be used as a secure storage and data processing system to increase the transparency of the data, reduce the

data redundancy, and enable flexible data sharing.

5.2 Supply Chain Management
Supply chain management is a good use case for blockchain since the tamper-proof ledger provides a complete,

unalterable, transparent history of food as it journeys from the farm or the ocean to the consumer. The E. coli

outbreak of 2018 was a good motivation for using blockchain in the supply chain. The U.S. Food and Drug

Administration (FDA) investigated the outbreak and concluded that a determination of the source of it was

challenging because of the short shelf-life of leafy greens and their packaging, how widespread their distribution

is, and the complex supply chain from the farm to the store [110, 125]. A blockchain-based solution can potentially

help identify the source in real-time as the outbreak was occurring. The provenance of the outbreak and the

customers affected could have been determined much more quickly. In response to the outbreak, Walmart

successfully built and implemented blockchain prototypes for tracking the provenance of mangos in the U.S.A.

and pork in China [125]. Their corporate office required all leafy green suppliers to use a blockchain solution [206].

In 2019 Walmart also began using blockchain to track shrimp shipped from India to the U.S. in a program that is

reminiscent of the World Wildlife Foundation’s (WWF) “from bait to plate" effort [111, 194]. In 2018 the WWF

prototyped a blockchain solution for tracing tuna caught in the Pacific Ocean to combat illegal fishing. That

solution has grown: in early 2019 it evolved into a platform named “OpenSC" that has been implemented in

Australia for tracking fish to the ocean to market, and in late 2019 Nestlé Food Group announced a collaboration

with OpenSC to track milk sent from New Zealand to the Middle East [184].

▷ Remark. Blockchain solutions in supply chain management can potentially greatly enhance the efficiency of

data management and the security of data sharing. The major challenge is that such solutions cannot prevent

human errors or inaccurate data from being uploaded to the system. On the other hand, blockchain can enhance

the transparency of supply chain data so as to enhance the efficiency of supply chain management. Data privacy,

however, becomes another major concern as many parties are involved in the supply chain.

5.3 Biomedical and Healthcare
Numerous research efforts have been made to explore blockchain applications in the biomedical and healthcare

domain, due to the need to build a secure system for maintaining the domain data. The U.S. Health and Human

Services (HHS) Department has developed an application called Accelerate for management of contract billing that

utilizes blockchain, artificial intelligence, machine learning, and process automation. The purpose of Accelerate
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was to manage a portfolio of 100,000 contracts worth 25 billion US dollars across almost 50 systems. The

blockchain within accelerating was used to capture the record of unstructured data (such as documents), rather

than storing the data itself. Accelerate proved successful in getting contract information dispersed across the

entire organization through replication of data, and was later to become the first blockchain-based application to

be certified by the Designated Approving Authority as having the Authorization to Operate [172]. Accelerate

was later expanded to acquisition management – replicating records of those contracts to researchers to make it

easier for them to find materials for their investigations. HHS has projected savings at the point of purchase of

up to 720M over time. Accelerate will expand to clinical areas to use blockchain for reporting sepsis disease data

to enhance the efficiency of data management [199]. Besides, the Centers for Disease Control (CDC)’s Center for

Surveillance Epidemiology and Laboratory Services also built proofs of concept for surveillance across state lines

to track the ongoing opioid crisis [174].

Interest in blockchain for usage in biomedical applications has grown since 2008, as can be observed by

searching PubMed.gov by publication year. The interest has grown exponentially in 2018 and 2019. Unfortunately,

the publications on PubMed show that much of the research being done is theoretical in nature, with very

few discussing deployments of blockchain in clinical settings. Notable works focus on data exchange and

interoperability. For instance, efforts have been made to utilize blockchain’s tamper-resistant capability and

integrate blockchainswith health electronic record standards such asHL7 and ISO 13606. Research and government

efforts have been made to use blockchains to manage patient data, allowing patients to have control over their

data.

▷ Remark. Many of these healthcare use cases are similar to supply chain management, e.g., tracking sepsis or

opodis is similar to tracking the products in the supply chain. In other words, they all utilize the efficiency of

data management of blockchains and the tracking capabilities of the transactions. Therefore, these use cases also

meet the challenge of managing the inaccurate data in the system. Besides, healthcare applications also have

additional challenges due to regulations and compliance.

5.4 Government Applications
Governments across the world have been exploring the use cases for blockchains in many different areas, as

surveyed by previous work [73], such as biomedical and healthcare applications reviewed in Sec. 5.3, financial

applications, asset management, and data management. For instance, governmental records such as birth and

death date property transfers are typically recorded in paper form. Due to its duplicate and distortion prevention,

blockchains are being used to simplify the recordkeeping and store the data securely [151]. Similarly, personal

identities could be managed in the same way, making it easy to prove people’s identities [126]. Examples include

ID2020 [8] and Platform Identity Management Netherlands (PIMN) [11].

Blockchains could be used by non-profit organizations (NPOs) to solve the trust issues. For instance, blockchains

can maintain the transparency of the data, showing donors that NPOs are using their money as intended.

Blockchains can also help NPOs to tribute funds more efficiency and enhance tracking capabilities [203].

▷ Remark. Governments play an important role in the adoption of new solutions. The realization of transactions

via blockchains requires complex integration work and a conducive regulatory environment. According to a

summary report from the 2019 OECD global blockchain policy forum, governments should partner with private

firms to encourage innovation and develop a flexible regulatory framework [3].

5.5 Critical Infrastructures
Several efforts have been made on critical infrastructures, i.e., power grid, smart city. Malaysia’s Melaka Straits

city, a tourist city funded by the Chinese government, has recently started the blockchain city project to track

tourist visas, passengers, luggage, and booking services using blockchain [196]. The city will also exchange its
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own token, the DMI coin, for tourists to exchange their money into digital currencies for payment in the city via

their mobile phones.

South Korea’s government recently announced a pilot to set up a blockchain-enabled virtual power plant (VPP)

in the city of Busan, the second-most populous city after Seoul [188]. The virtual power plant is a cloud-based

distributed power plant that integrates multiple energy resources to optimize power generation. The project

involves the city of Busan and several major local companies and institutions.

▷ Remark. Blockchain, being used in critical infrastructures, can protect the integrity of the data due to

the tamper-proof nature of the system. The system is intrusion-tolerant since it tolerates arbitrary failures.

Independent of these blockchain-based solutions, BFT-based solutions have been also used to protect critical

infrastructures motivated by the same reason. For instance, Supervisory Control and Data Acquisition (SCADA)

system, as a key component of the power grid infrastructure, is proposed to be replicated to avoid the single

point of failure. BFT is used as the consensus protocol among the replicated nodes to guarantee the security of

the data [33–35]. Indeed, if the features other than BFT in blockchains (e.g., smart contract) are not desirable,

building an intrusion-tolerant system and implementing additional required features from scratch might result in

a more efficient and performant system.

5.6 Social and Educational Applications
The Department of Information and Communications Technology of the Philippine government has started a

blockchain-based pilot to offer services such as cost-benefit and socio-economic analysis in the Philippines [47].

The blockchain solution will serve as a system for analyzing, storing, and optimizing cloud-based data sets.

Several industries in Japan have adopted blockchain technology [177]. For instance, Fujitsu and Sony focus on

blockchain within the education sector. Sony partners with IBM to use blockchain for student data management,

targeting primary and higher education learners.

Blockchains for media is an area being explored. According to America News Hour [128], the global market for

blockchain in media and entertainment is estimated to reach $1.54 billion by 2024. The use of blockchains can be

used for original content royalties tracking, which has the potential to eliminate fraud, reduce costs, and protect

Intellectual Property (IP) rights of the content, like artworks. For example, on 19 February 2021, an animated Gif

of Nyan Cat, as a unique digital item authenticated on the blockchain, sold for more than $500,000 [17]. This

artwork as a non-fungible token (NFT) can be thought of as certificates of ownership for virtual or physical

assets [68].

▷ Remark. In these applications, blockchains serve as a data storage and management system for storing the

data securely and providing a gateway for data analysis. In other words, blockchains can be viewed as a system

that complements cloud services.

6 BFT RESEARCH IN THE PAST FOUR DECADES

6.1 Comparison of Different BFT Categories
We compare different categories of BFT protocols in Table 4. The most robust BFT consensus protocols are

broadcast-based ones. Broadcast-based consensus protocols have high message complexity and communication

complexity, i.e., typically 𝑂 (𝑛2). Following the broadcast based communication pattern, the message complexity

can be reduced to 𝑂 (𝑛) by letting one replica communicate with all other replicas at a time. Examples include

SBFT and HotStuff, which preserve the three-phase workflow of PBFT but reduce the complexity to O(n) by letting

one replica (or several replicas) collect the proof of agreement. The drawback is that the system state may have

forks that need to be recovered after replicas detect them. Furthermore, the message complexity can be reduced

via other types of message patterns such as chain-based BFT. In chain-based BFT, each replica communicates with

one or few other replicas. Due to the use of pipelining workflow, the system throughput can be improved. The
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major drawback is also failure handling similar to other BFT protocols with 𝑂 (𝑛) complexity. Trusted hardware

can be used to reduce the requirements for the total number of replicas and enhance the efficiency of the protocol,

making BFT has a CFT-like complexity and cost for replication. The major challenge is that the correctness of a

protocol fully relies on the trusted hardware.

The scalability (server scalability) of the system can be enhanced via approaches such as sharding, e.g., parallel

based BFT or hierarchical BFT. Note that asynchronous consensus protocols have even higher message complexity

(𝑂 (𝑛3) for most practical protocols) and communication complexity. Such protocols, however, allow replicas to

propose transactions in parallel. Therefore, in some cases, asynchronous protocols may achieve higher throughput

and better server scalability than partially synchronous protocols.

Type of BFT 𝑛 Latency

Message

Complexity

Communication

Complexity

Additional requirements

Broadcast-based BFT 3𝑓 + 1 Low High High None

Chain-based BFT 3𝑓 + 1 Medium Low-Medium Medium None

Trusted hardware based BFT 2𝑓 + 1 Low Medium High Trusted hardware

Hybrid BFT 𝑓 + 1 to 3𝑓 + 1* Low Medium High Failures are infrequent

Scalable BFT 3𝑓 + 1 High High High Modified failure model

Asynchronous BFT 3𝑓 + 1* Medium High High None

Table 4. Comparison of BFT-based consensus. *Some protocols may require different 𝑛.

6.2 BFT with the Rise of Blockchains
With the rise of blockchains, the needs to optimize BFT solutions and develop new protocols have evolved rapidly.

This also explains the trend in some recent development. We identify several trends of BFT research driven by

the needs of blockchains.

The choice of cryptography. Conventional BFT protocols are built on top of digital signatures and hashes. A lot

of efforts have beenmade to replace digital signatureswithMACs for reducing the computational cost [65, 118, 144].

This is mainly because the cost of cryptographic operations may dominate the overhead. Such an approach, due to

the non-transferability of the MACs, may create problems such as big MAC attacks by the clients [75]. Due to the

evolution of modern computer hardware, the cost for cryptographic operations becomes much lower. With the

rise of blockchains, BFT is usually deployed in the WAN network, making the cost of cryptographic operations

almost negligible. Furthermore, the transferrable authentication of digital signatures is important in blockchains

for the verification of transaction history. Accordingly, other cryptographic choices such as threshold signatures

and aggregate signatures are introduced for verification. Furthermore, as asynchronous BFT becomes more

practical, it introduces an interesting observation: a BFT can be built by simply assuming an authenticated channel

and some global common coin protocol, which can be built from approaches such as threshold PRF [101]. To

further achieve other security goals, one could also integrate BFT with approaches such as symmetric encryption

to achieve confidentiality [102] or threshold encryption to prevent censorship attacks [178].

In some application areas of blockchains, the anonymity of users and confidentiality of the data become

extremely important, which require the design of new BFT approaches, integration with other cryptographic

primitives, or novel system architecture [26, 71, 112, 113]. For instance, approaches such as ring signatures

have recently been integrated with vector consensus [55], a weaker primitive than atomic broadcast (i.e., BFT);

threshold cryptography has been used in secure causal atomic broadcast [58, 100]. The practicability of the

approach and the applicability to blockchains, however, are yet to be discovered.
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The choice of simplicity. Distributed SMR protocols have been known to be difficult to understand and

implement, even for CFT protocols [67]. For instance, RAFT protocol (a CFT protocol) takes understandability as

the first-class goal in the design [187]. BFT, in contrast, is even more difficult to understand and implement. When

practical BFT was first studied, a lot of efforts were made to reduce the complexity during normal-case operation.

For instance, hybrid BFT switches between different BFT instances to enjoy high performance in failure-free

cases and resilience under failures [37, 97, 118, 133, 144, 186]. This is usually achieved at the cost of switching

between different instances or higher cost to elect a new leader.

Due to the difficulty of implementing BFT correctly, recent trends tend to accept simpler BFT design. For

instance, HotStuff uses only one message type to manage the entire BFT protocol [230]. The Streamlet protocol

also targets a simple design for BFT [66], although it was discovered that there is a gap between Streamlet and

BFT SMR [1]. Furthermore, in contrast to partially synchronous BFT, the algorithms of asynchronous BFT are

also simpler since asynchronous BFT does not involve subprotocols such as view changes. The practicality in the

real system, however, is yet to be discovered.

The needs of scalability. BFT SMR was believed to be useful only in a small network, as the case for CFT. As a

result, BFT was usually tested in small networks with 𝑓 smaller than 5 (a maximum of 16 replicas), unless the

protocols were designed to enhance the server scalability. In the blockchain setting, the system is usually deployed

in a WAN network with a relatively large set of replicas. Therefore, it is desirable to achieve a balance between

the system performance and server scalability [220]. As a result, in recent works on BFT, server scalability has

become de facto study when assessing the performance and most works evaluate the system throughput using at

least 100 replicas in WAN [101, 119, 120, 178, 197, 212, 230].

6.3 When to Choose Which?

Use Case Permission Security Performance Client Scalability Server Scalability

Finance Yes/No High High Medium-High Medium

Supply Chain Management Yes High Medium-High High Medium-High

Biomedical and Healthcare Yes High Medium Medium-High Low-Medium

Critical Infrastructures Yes High Medium Medium Low-Medium

Social and Education Yes Medium-High Low-Medium Low-Medium Low-Medium

Table 5. Summary of the use cases, the need of permission to build a blockchain-based solution, and the requirements for
security, performance, server scalability, and server scalability.

We summarize and compare the use cases in Table 5 according to five different criteria. First, for each use

case, whether a permissioned or permissionless system is more appropriate. Second, we summarize the security

requirement for each use case, i.e., how critical are the corresponding data in each use case? Third, we evaluate the

performance requirements for the use cases, in particular throughput. We evaluate the requirements according to

the volume of data/transactions for most use cases in the category. Last but not least, what are the requirements for

client scalability and server scalability? For most use cases, there are multiple applications where the workloads

and security requirements are varying. We summarize the general requirements for use cases in different

categories.

Certain financial applications utilize cryptocurrencies as a blockchain solution for payments, asset management,

etc. Therefore, they can be built as a permissionless system. Besides, most of these applications need permission

to build a distributed system, as the management of data has to be done by authorized users. Furthermore, since

the major contribution of blockchains is to provide high availability of the service and integrity of the data,
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Number of 
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Fig. 9. Which BFT category should one choose? (Note: ‘Relatively large’ means over 200 replicas.)

blockchains are usually explored in mission-critical systems where there is a strong need for data security. Finally,

the requirements for system performance (i.e., high throughput, low latency, and high scalability) depend on the

scale of the system and the specific applications. In general, financial applications and supply chain management

involve a large number of transactions, which require a system with high throughput and great scalability.

In comparison, other use cases may not have a large number of concurrent transactions such as healthcare

and critical infrastructures. Instead, it might be desirable to provide additional security features such as the

confidentiality of user data.

It has become a common belief that there is no one-size-fits-all BFT protocol. We also illustrate in Fig. 9 a

decision tree on which BFT category is the best fit for a given workload and system expectation. The decision

tree can be viewed as a rough reference for choosing the right type of protocol while a lot decision details are not

fully (and unfortunately impossible to be) captured. The foremost question to ask is whether the system may

suffer from network scheduler attacks or unstable network conditions. If this is the case, one may choose to

use asynchronous BFT. The cost is higher message complexity and relatively longer latency than BFT in other

categories. If a fully asynchronous network and the resilience under extreme network conditions are not major

concerns, one has to consider the number of servers that need to be supported. If server scalability is desirable,

scalable BFT such as hierarchical BFT or parallel BFT might be considered. Scalable BFT can be combined with

sharding to further enhance the scalability and performance by fulling utilizing parallelism. If server scalability is
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not needed, one may need to consider the needs for latency (under low concurrency of client requests). If low

latency is required, trusted hardware based BFT or hybrid BFT can be used since protocols in these two categories

optimize the workflow in the normal operation. If one favors throughput over latency, broadcast-based BFT or

chain-based BFT can be considered. The difference between broadcast-based BFT and chain-based BFT is that

broadcast-based BFT usually achieves a balance between latency, throughput, and robustness under failures, while

chain-based BFT takes more expensive procedures to resume normal operation after failures than broadcast-based

BFT.

7 CONCLUSION
This article reviews the Byzantine fault-tolerant protocols, with an emphasis on the application in blockchains,

including permissioned and hybrid blockchains. We categorize the BFT protocols according to their types and

message patterns, review their design, as well as provide insights into the BFT mechanisms. We also summarize

the BFT approaches, compare and contrast their features. Finally, we review the real-world use cases and the BFT

approaches adopted by real systems. By reviewing the development of BFT in blockchains and comparing the

use cases, we summarize the research trend with the rise of blockchains, outlook the development of BFT, and

discuss the challenges that need to be addressed.
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