EPIC: Efficient Asynchronous BFT with Adaptive Security

Chao Liu
UMBC

Abstract—Asynchronous BFT protocols such as HoneyBad-
gerBFT and BEAT are inherently robust against timing, perfor-
mance, and denial-of-service attacks. The protocols, however,
achieve static security, where the adversary needs to choose the
set of corrupted replicas before the execution of the protocol.
The situation is in contrast to that of most of existing BFT
protocols (e.g., PBFT) which achieve adaptive security, where
the adversary can choose to corrupt replicas at any moment
during the execution of the protocol.

We present EPIC, a novel and efficient asynchronous BFT
protocol with adaptive security. Via a five-continent deployment
on Amazon EC2, we show that EPIC is slightly slower for
small and medium-sized networks than the most efficient
asynchronous BFT protocols with static security. We also find
as the number of replicas is smaller than 46, EPIC’s throughput
is stable, achieving peak throughput of 8,000-12,500 tx/sec
using t2.medium VMs. When the network size grows larger,
EPIC is not as efficient as those with static security, with
throughput of 4,000-6,300 tx/sec.

Keywords-Byzantine fault tolerance, asynchronous BFT,
adaptive security, adaptively secure BFT, threshold cryptog-
raphy

I. INTRODUCTION

State machine replication (SMR) [52,69] is a proven
software technique to enable fault-tolerant and highly avail-
able services in critical distributed systems (e.g., Google’s
Spanner [17], Apache ZooKeeper [43]).

Byzantine fault-tolerant (BFT) SMR is the only known
software solution for masking arbitrary failures and ma-
licious attacks. BFT has been regarded as the model for
building permissioned blockchains, where the distributed
ledgers (i.e., replicas) know each other’s identities but may
not trust one another. BFT can be also used to improve
the performance and deal with the lack of finality for
permissionless blockchains, where enrollment is open to
anyone and nodes may join and leave dynamically. These
permissionless blockchains using BFT are also known as
hybrid blockchains (e.g., [3,30,34,47,48,57,65,77]).

BFT protocols can be roughly divided into three cate-
gories according to their timing assumptions: asynchronous,
synchronous, or partially synchronous [33]. In asynchronous
BFT, neither safety nor liveness relies on timing assump-
tions. In synchronous BFT systems, both safety and live-
ness may be violated if the synchrony assumption fails
to hold. Partially synchronous BFT systems never violate
safety but they achieve liveness when the network be-
haves synchronously only. (It was demonstrated in [60]

Sisi Duan
UMBC

Haibin Zhang
UMBC

that PBFT [25] would achieve zero throughput against an
adversarial asynchronous network scheduler, echoing the
celebrated FLP impossibility result [35].) For this reason,
asynchronous BFT protocols are inherently robust against
timing, performance, and denial-of-service (DoS) attacks
and (arguably) the most appropriate solutions for mission-
critical blockchain applications.

Due to its inherent robustness, asynchronous BFT
(and atomic broadcast) have been extensively studied [4,
12,19,21,28,32,51,60,63,68]. Most notably, two recent
asynchronous BFT systems, HoneyBadgerBFT [60] and
BEAT [32], have comparable performance as partially syn-
chronous BFT protocols and can scale to 100 replicas. In
particular, HoneyBadgerBFT is an efficient asynchronous
protocol with a modern implementation and a scalable real-
world deployment, while BEAT offers various performance
improvements for different application scenarios.

Despite the impressive performance and robustness for
HoneyBadgerBFT and BEAT, the protocols have several
major issues.

Static vs. Adaptive security. Depending on how the ad-
versary decides to corrupt parties, there are two types of
corruptions for BFT protocols:

e Static corruptions, where the adversary is restricted to
choose its set of corrupted replicas at the start of the
protocol and cannot change this set later on.

e Adaptive corruptions, where the adversary can choose
its set of corrupted replicas at any moment during the
execution of the protocol, based on the information it
accumulated thus far (i.e., the messages observed and
the states of previously corrupted replicas).

There is a strong separation result: statically secure pro-
tocols are not necessarily adaptively secure [23,29]. Honey-
BadgerBFT and BEAT (and a prior system SINTRA [21])
defend against static adversary only. The reason is that
these protocols heavily rely on efficient but statically secure
threshold cryptography. The situation is in contrast to that of
partially synchronous BFT protocols, most of which achieve
adaptive security [7,25,26, 31, 38,42, 50,59, 73].
Centralized vs. Distributed key generation. Both Hon-
eyBadgerBFT and BEAT use threshold PRF and threshold
encryption and require a trusted dealer to generate the cryp-
tographic keys for individual replicas. The key generation
procedure for HoneyBadgerBFT and BEAT is thus central-

ized. In contrast, most of the efficient BFT protocols rely on
authenticated channels or digital signatures and do not need
a trusted setup. It is desirable for efficient asynchronous BFT
protocols to support a distributed key generation. In fact, we
should build asynchronous BFT protocols with distributed
key generation that is secure against adaptive corruptions.
Understanding the (exact) performance bottleneck(s)
for asynchronous BFT. Asynchronous BFT protocols are
complex, consisting of different distributed components and
cryptographic building blocks. Both HoneyBadgerBFT and
BEAT use reliable broadcast (RBC), asynchronous binary
agreement (ABA), and threshold cryptography. Duan et al.
showed in BEAT that asynchronous BFT can perform rather
differently if using different RBC protocols [32]: Bracha’s
broadcast [15] results in a latency-optimized asynchronous
BFT, AVID broadcast [22] leads to bandwidth-efficient and
high-throughput ones, and AVID-FP [41] and its variant
can be used to build bandwidth-optimal asynchronous BFT
storage. In this paper, we find that not just RBC, the other
two building blocks — ABA and threshold cryptography —
can impact the performance significantly.

The case of ABA. Both BEAT and HoneyBadgerBFT uti-
lize an ABA protocol proposed by Mostefaoui, Hammouma,
and Raynal [64] (MHR ABA). The MHR ABA protocol is
known as the most efficient ABA protocol that terminates in
two rounds in expectation (completing within O(r) rounds
with probability 1 —27"). In each round, the MHR protocol
has two or three steps. (In contrast, the entire PBFT protocol
has three steps only.)

The situation is exacerbated by a liveness issue recently
reported [1]. Specifically, the MHR protocol assumes perfect
random coins completely independent of the state of all
correct nodes when they query the coin. The property is
not guaranteed by any existing cryptographic common coin
protocols. A malicious network scheduler can keep correct
nodes entering the next round with inconsistent values, caus-
ing the protocol not to terminate. The best known solution
to date is to use Cobalt ABA [58] which has one additional
step for each round. The added cost, by percentage, could
be significant, considering the MHR ABA terminates in two
rounds in expectation and in each round there are only two
or three steps.

While theoretically the resulting asynchronous BFT has
much more rounds than PBFT, it was demonstrated that
some ABA protocols may terminate faster than expected [62,
63]. The experimental result, however, was reported for ABA
protocols terminating in an expected exponential number of
rounds and for settings where the total number of replicas
is at most ten. It is still unclear how the ABA protocols of
our interests (terminating in an expected constant rounds)
perform. It is interesting to evaluate the performance of
asynchronous BFT using these ABA protocols for settings
with more replicas.

The case of cryptography. 1t is well known that cryptogra-

phy can be vital to the performance of BFT protocols. It was
originally believed that signature-free BFT protocols such as
PBFT are (much) more efficient than BFT protocols using
signatures. It was later reported (e.g., BFT-SMaRt [73]) that
with modern infrastructures, BFT protocols using signatures
can be comparable to those without signatures. Some recent
protocols such as HotStuff [76] and SBFT [37] using more
expensive threshold signatures were also shown to be both
efficient and scalable.

The situation for asynchronous BFT is arguably more
complicated. First, HoneyBadgerBFT and BEAT use two
(instead of one) threshold cryptographic primitives —
threshold encryption and threshold PRF (pseudorandom
function). Both protocols use them extensively. Second, the
way of using threshold cryptography for them is quite differ-
ent from that of partially synchronous BFT protocols. The
threshold cryptographic operations in these asynchronous
BFT protocols are evenly distributed among n replicas. The
two features make it difficult to predict the exact bottlenecks
for asynchronous BFT. In particular, if one aims to build a
BFT protocol by modifying two primitives, one would have
to implement and evaluate multiple protocols.

Besides, most known adaptively secure cryptographic
schemes are known to be (much) more expensive than their
statically secure ones [53—55]. It is unclear if asynchronous
BFT protocols using adaptively secure schemes can be
practical.

For both ABA and cryptography cases, we aim to un-
derstand the exact performance bottlenecks by mixing and
matching different building blocks.

A. Our Contribution

We propose EPIC, an efficient asynchronous BFT protocol
with adaptive security. We summarize our contributions as
follows:

e We first characterize efficient BFT protocols using cor-
ruption models (adaptive vs. static corruptions).

e EPIC takes a new approach to adaptively secure asyn-
chronous BFT. First, EPIC uses the LM-LJY adaptively
secure threshold PRF scheme [53, 55] for common coins.
Second, EPIC uses the Cobalt ABA protocol [58] which
resolves the liveness issue of HoneyBadgerBFT and
BEAT. Last, EPIC uses a hybrid method of the random
transaction selection (as used in HoneyBadgerBFT and
BEAT) and the FIFO transaction selection (as used in
CKPS [19] and SINTRA [21]), eliminating the usage of
expensive threshold encryption.

e EPIC instantiates and implements the distributed key gen-
eration protocol [53] which is also secure against adaptive
corruptions. In comparison, HoneyBadgerBFT and BEAT
do not have distributed key generation protocols, and
most of the multi-party computation protocols simply do
not instantiate ideal broadcast channels.

e As our new protocol modifies almost all building blocks
for asynchronous BFT (including ABA, threshold PRF,
and threshold encryption) but RBC, evaluating which
component dominates the performance bottleneck is a
difficult task. We therefore mix and match different
building blocks to implement four asynchronous BFT
protocols and evaluate their performance difference. Be-
sides, to understand the cryptographic overhead, we
implemented our baseline protocol with static security
and EPIC with adaptive security. Our approach comple-
ments BEAT which essentially evaluated the performance
difference using different RBC protocols.

e We show that EPIC is slightly slower than asynchronous
BFT protocols with static security if the network size is
small; however, if the network size grows larger, EPIC
is not as efficient as those with static security. Besides,
EPIC achieves its peak throughput when the network size
is small, but even with 31 replicas, EPIC can still achieve
throughput of 10,000 tx/sec for transactions of size 250
bytes.

II. RELATED WORK

BFT assuming partial synchrony. Efficient partially syn-
chronous BFT has been extensively studied [7,9, 26,31, 37,
38,42,50,59,73,76]. Even for partially synchronous BFT
protocols focusing on robustness [7,26], their performance
can drop 78%-99% in the presence of Byzantine replicas
and/or clients [8]. It is demonstrated that PBFT would
achieve zero throughput against an adversarial asynchronous
scheduler [60].

Asynchronous binary agreement (ABA). ABA was in-
troduced independently by Ben-Or [11] and Rabin [67].
ABA is a fundamental primitive to build most complex
distributed system protocols [12,18,19,21,28,61, 63]. For
this reason, a significant number of ABA protocols have
been proposed [13,16,20,24,36,58,64,67,72,74,75,78].
Cachin, Kursawe, and Shoup (CKS) [20] proposed an ef-
ficient ABA which achieves optimal resilience and runs in
O(n?) message complexity. The CKS ABA heavily uses
RSA-based dual-threshold signatures [70] which are com-
putationally expensive. Mostefaoui, Hamouma, and Raynal
(MHR) [64] presented the first signature-free ABA that has
the same message complexity as the CKS ABA [20]. The
MHR ABA is used in HoneyBadgerBFT and BEAT. It is
reported that the MHR ABA, however, has a liveness issue,
if being instantiated using any existing cryptographic coin
flipping protocols [1].

Asynchronous atomic broadcast and BFT. In an atomic
broadcast, a broadcaster (one of the replicas) broadcasts
messages to all replicas, and all replicas should deliver
messages in the same order. Instead, BFT state machine
replication specifies clients and replicas, and all replicas
delivers client messsages in the same order. We do not distin-
guish Byzantine atomic broadcast and BFT and collectively

call them BFT.

Asynchronous BFT protocols, such as SINTRA, Honey-
BadgerBFT, and BEAT, follow the asynchronous common
subset (ACS) framework [12,19] which can be realized
using RBC and ABA. The underlying ABA protocols are
efficient, terminating in an expected constant number of
rounds.

RITAS is a stack of randomized distributed protocols
defending against Byzantine failures [63], RITAS consists
of an efficient atomic broadcast implementation of Correia,
Neves, and Verissimo [27]. While the protocol theoretically
terminates in an expected exponential number of rounds, it
was demonstrated that the protocol in practice may execute
in only a few rounds for certain conditions. The RITAS
protocol is shown to be efficient for a cluster of ten replicas.

Recently, Abraham, Malkhi, and Spiegelman provided
an asynchronous BFT protocol that reduces message com-
plexity to O(n?) [5], utilizing a similar workflow used
in HotStuff [76]. Besides its higher latency, the protocol
has theoretically lower throughput than HoneyBadgerBFT
and BEAT which can select random transactions for high
throughout.

Asynchronous hybrid BFT protocols. KS [51] and RC [68]
are asynchronous hybrid BFT protocols guaranteeing both
safety and liveness under asynchronous environments. Both
protocols have an optimistic BFT protocol under “normal”
circumstances (where there is no failure or the primary
is correct) and a pessimistic BFT protocol under “rare”
circumstances (e.g., asynchrony). KS [51] and RC [68] use
PBFT-like protocols during normal operations and random-
ized asynchronous BFT for recovery in case of failures
or asynchrony. KS proceeds in epochs and uses Bracha’s
broadcast [15] during the normal-operation phase, just like
in PBFT. It suggests using randomized Byzantine agreement
for backup and delivers some requests for liveness. It has
the same efficiency as PBFT during gracious execution.
RC replaces the reliable broadcast primitive in KS using
consistent broadcast, a weaker primitive. RC is the first BFT
protocol (atomic broadcast) with the message complexity
only O(n) in its normal case, while all other BFT (atomic
broadcast) protocols have the message complexity O(n?).
The improvement comes at the cost of more expensive
recovery phase using heavy public-key cryptography. There
is no implementation for either KS or RC.

Asynchronous MPC. Lu et al. [56] recently provided the
first robust asynchronous multi-party computation system
with guaranteed output delivery using HoneyBadgerBFT.
The protocol achieves static security.

III. SYSTEM AND THREAT MODEL

BFT. We consider a Byzantine fault-tolerant state machine
replication (BFT) protocol, where f out of n replicas can
fail arbitrarily (Byzantine failures) and a computationally
bounded, adaptive adversary can coordinate faulty replicas.

The adaptive adversary can choose its set of dishonest parties
at any moment during the execution of the protocol, based on
the messages transmitted and the internal states of previously
corrupted replicas. The BFT protocols considered in this
paper tolerate f < |"3!| Byzantine failures, which is
optimal.

A replica delivers operations, each submitted by some
client. The client should be able to compute a final response
to its submitted operation from the responses it receives from
replicas. We use operations, (client) requests, and transac-
tions (blockchain terminology) interchangeably. Correctness
of a BFT protocol is specified as follows.

e Agreement: If any correct replica delivers an operation
m, then every correct replica delivers m.

e Total order: If a correct replica has delivered an oper-
ation m with a sequence number, and another correct
replica has delivered an operation m’ with the same
sequence number, then m = m/.

o Liveness: If an operation m is submitted to n— f correct
replicas, then all correct replicas will eventually deliver
m.

The liveness property has been referred to by other names

(e.g., “fairness” [19],“censorship resilience” [60]).
Timing assumption. We can roughly divide BFT protocols
into three categories according to their timing assumptions:
asynchronous, synchronous, or partially synchronous [33].
An asynchronous BFT system makes no timing assump-
tions on message processing or transmission delays. If
there is a known bound on message processing delays and
transmission delays, then the corresponding BFT system
is synchronous. Partially synchronous BFT lies in-between:
messages are guaranteed to be delivered within a time bound,
but the bound may be unknown to participants of the system
or system designers.

Asynchronous BFT protocols are inherently more robust
than other BFT protocols. Due to the celebrated FLP impos-
sibility result [35] which rules out that deterministic proto-
cols reach consensus in fully asynchronous environments,
asynchronous BFT protocols must rely on randomization
and be probabilistically live. This paper considers purely
asynchronous systems making no timing assumptions on
message processing or transmission delays. We assume
synchrony for the distributed key setup phase, which is a
one-time event. We will discuss the implication of the system
choice.

IV. PRIMITIVES AND BUILDING BLOCKS

This section reviews the cryptographic and distributed
systems building blocks for EPIC.
Threshold pseudorandom function (PRF). We describe
threshold PRF with a decentralized key generation (e.g.,
[53]). A (t,n) threshold PRF scheme for a function F
consists of the following algorithms (FGen, Eva, Vrf,
FCom).

e An interactive key generation algorithm FGen involves
n players pi,---,p,. Each player p; takes as input
common public parameters, a security parameter [, the
number n of total servers, and threshold parameter ¢.
The output of the protocol is (pk, vk, sk), where pk
is the public key, vk is the verification key, and sk =
(ski,- - ,sky) is a list of private keys. Both pk and vk
are known to anyone, and p; only obtains sk;.

e A PRF share evaluation algorithm Eva takes a public key
pk, a PRF input m, and a private key sk;, and outputs a
PRF share o;.

e A share verification algorithm Vrf takes as input the
verification key vk, a PRF input m, and a PRF share
o;, and outputs a single bit.

e A combining algorithm FCom takes as input the verifi-
cation key vk, a PRF input m, and a set of ¢ valid PRF
shares, and outputs a PRF value o.

We require the threshold PRF value to be unpredictable
against an adversary that controls up to t—1 servers. We also
rely on an additional uniqueness property, which guarantees
that for a given public key pk, there exists exactly one valid
signature on each message m. One can consider both static
and adaptive adversaries just as in BFT protocols. In the
adaptive corruption model, the adversary can corrupt players
and query signing oracles at any moment of the protocol,
based on the information collected so far.

Byzantine reliable broadcast (RBC). In RBC, a sender

(one of the replicas) sends a message to all other replicas.

An asynchronous RBC protocol [52] satisfies the following

properties:

e Agreement: If two correct replicas deliver two messages
m and m’ then m = m/.

o Totality: If some correct replica delivers a message m,
all correct replicas deliver m.

e Validity: If a correct sender broadcasts a message m, all

correct replicas deliver m.

o Integrity: Every correct replica delivers a message m
from sender p at most once. If p is correct, then m was

previously broadcast by p.

Bracha’s broadcast [15] is a well-known implementation

of RBC. To broadcast a message m, its communication
complexity is O(n?|m|). Cachin and Tessaro [22] proposed
an erasure-coded RBC (AVID broadcast) reducing the band-
width to O(n|m|). EPIC is compatible with any RBC and
implements AVID broadcast as in HoneyBadgerBFT and
BEAT.
Asynchronous binary agreement (ABA). In an ABA proto-
col, each replica has a binary value as an initial input v,
(also known as a vote). ABA allows replicas to agree on
the value of a single bit and deliver the value. ABA should
satisfy the following properties:

e Validity: If all correct replicas have the same input
value v, correct replicas will deliver v.

e Agreement: If a correct replica delivers v and another
correct replica delivers v/, then v = v'.

e Termination: All correct replicas eventually deliver a
binary value with probability 1.

An ABA protocol proceeds in rounds, where for a round
r, a replica has an input est,.. ABA protocols considered in
the paper have an expected constant number of rounds. In
each round, there are a small number of steps (two to four
steps for the ABA protocols we consider), and replicas query
the common coin (realized using threshold cryptography)
and decide to either terminate the protocol or propose some
values for the next round.

V. PROBLEMS AND TECHNICAL OVERVIEW
A. Review of Efficient Asynchronous BFT Protocols

deliver tx,
1

RBC RBC deliver tx, ABA

Py — X

Pr — i,

AN VaNEVaNE

O X
aa¥a

Py — tx,

Py — g

Figure 1. The ACS consensus workflow.

We consider the ACS (asynchronous common subset)
framework for asynchronous BFT. In the framework, servers
propose a subset of transactions in their transaction pool
and deliver the union of the transactions in the agreed-upon
vector. The framework was used by Ben-Or et al. [12],
CKPS [19], SINTRA [21], HoneyBadgerBFT [60], and
BEAT [32].

Figure 1 reviews the framework for HoneyBadgerBFT and
BEAT (with threshold encryption ignored). The protocols
proceed in epochs. Each epoch consists of two phases:
an RBC phase and an ABA phase. In the RBC phase,
each replica proposes a subset of transactions from its
transaction pool (a proposal) and uses RBC to broadcast the
transactions. In the ABA phase, replicas run n parallel ABA
instances, the ¢-th of which is used to agree on whether the
proposal from replica p; has been RBC-delivered.

In Figure 1, replicas p; (i € [0..3]) propose transactions
tx;, respectively. When a replica delivers a value from an
RBC instance j € [0..3], it inputs 1 to the j-th ABA instance.
HoneyBadgerBFT and BEAT follow Ben-Or et al. [12] and
ask each replica to abstain from proposing 0 until n — f
ABA instances have been delivered by the replica, which
guarantees system throughput.

Also for high throughput, HoneyBadgerBFT ensures that
each replica proposes mostly disjoint sets of transactions.
Thus, replicas in HoneyBadgerBFT propose randomly se-
lected transactions. To prevent an adversary from censoring
a particular transaction, HoneyBadgerBFT requires replicas

to use threshold encryption to encrypt transactions. After
delivering transactions in ciphertext, replicas collectively
decrypt them.

HoneyBadgerBFT uses the bandwidth-efficient AVID
broadcast for RBC [22] and the MHR protocol for
ABA [64]. BEAT is a family of five asynchronous BFT
protocols, providing a series of improvements to Honey-
BadgerBFT. In particular, the baseline protocol in BEAT
(hereinafter BEAT) eliminates the usage of pairing-based
cryptography and leverages more efficient threshold cryp-
tography using elliptic curves. Other protocols in BEAT
mainly explore the performance impact using different RBC
or information dispersal protocols.

B. Characterizing BFT Using Corruption Models

We characterize existing BFT protocols using corruption

models. For static security, the adversary needs to decide
which replicas to corrupt before the execution of the system,
whereas for adaptive security, the adversary can adaptively
choose which replicas to corrupt, based on information the
adversary has accumulated thus far.
Common-coin asynchronous BFT. Efficient asynchronous
BFT systems, such as SINTRA, HoneyBadgerBFT, and
BEAT, use the ACS framework and rely on cryptographic
common coins.

SINTRA uses the RSA-based dual threshold signature

scheme of Shoup [70] and the Diffie-Hellman problem based
threshold PRF scheme of Cachin, Kursawe, and Shoup [20]
implemented using finite fields. HoneyBadgerBFT uses the
pairing-based threshold encryption of Baek and Zheng [44]
and the pairing-based threshold signature of Boldyreva [14].
BEAT uses the threshold encryption scheme of Shoup and
Gennaro [71] and the threshold PRF scheme of Cachin,
Kurasawe, and Shoup, both of which are implemented using
elliptic curves. All of the above threshold cryptographic
schemes are proven secure against static corruptions only.
Therefore, the corresponding asynchronous BFT systems
achieve static security.
Local-coin asynchronous BFT. RITAS is a stack of ran-
domized distributed protocols defending against Byzantine
failures [63] in the adaptive corruption model. It consists
of an efficient atomic broadcast protocol of Correia, Neves,
and Verissimo (CNV) [27]. Instead of using common coins,
the CNV protocol relies on local coins. While the protocol
terminates in an expected exponential number of rounds, it
was demonstrated that the protocol in practice may execute
in only a few rounds for certain conditions. In a different
scenario, the classic Bracha’s ABA protocol [15] was shown
to have better performance than the ABA protocol of Cachin,
Kursawe, and Shoup [20] in the LAN environment where the
total number of replicas is at most ten [62].

The CNV atomic broadcast protocol is much more band-
width and round expensive than both HoneyBadgerBFT
and BEAT. This makes it theoretically less efficient in a

scalable WAN environment. No known experimentation was
conducted for the CNV protocol with more than ten replicas.
Moreover, as the CNV protocol terminates in an expected
exponential number of rounds, its performance with an asyn-
chronous network scheduler would be considerably worse
than HoneyBadgerBFT and BEAT.

Partially synchronous BFT. Most of the existing BFT
protocols in partially synchronous environments [7,26, 38,
42,50,59,73] achieve adaptive security. Protocols such as
SBFT [37] and HotStuff [76] rely on statically secure
threshold signatures and achieve static security only.
Committee-based (BFT) protocols. Some scalable hybrid
blockchain protocol [66] or Byzantine agreement proto-
col [46] does not use threshold cryptography but involves
the selection of a small committee among all replicas for
consensus, which makes adaptive security a non-trivial task
for them. This is not our concern, as we study conventional
BFT protocols where all replicas, not just a fraction of them,
need to participate in the consensus process.

C. Achieving Adaptive Security for EPIC

EPIC follows HoneyBadgerBFT and BEAT and uses a
novel combination of new primitives to achieve adaptive
security.

As we mentioned above, both HoneyBadgerBFT and
BEAT use threshold common coin and threshold encryption
schemes which are statically secure. Intuitively, to achieve
adaptive security, one would have to replace both statically
secure primitives using adaptively secure ones.

First, we adopted and implemented the adaptively secure
threshold PRF scheme of Loss and Moran [55] which is built
from the adaptively secure threshold signature scheme of
Libert, Joye, and Yung [53].! The adaptively secure thresh-
old PRF scheme (hereinafter the LM-LJY threshold PRF)
requires four pairing computation for signature verification,
twice more expensive than the threshold PRF scheme in
HoneyBadgerBFT which requires two pairing computation.
The LM-LJY scheme is much more expensive than the
pairing-free threshold PRF scheme in BEAT. It is natural to
explore the performance penalty of using adaptively secure
threshold PRF protocol.

To handle threshold encryption, one could use an adaptive
secure one as well. To our knowledge, the scheme of Libert
and Yung [54] is the most efficient threshold encryption
scheme. The scheme, however, relies on a bilinear group
of composite order, which is much less efficient than a
regular, prime-order bilinear group [39]. We take a dif-
ferent approach without using threshold encryption. In our
approach, replicas maintain a transaction buffer. Replicas
select a random subset of 7' transactions in plaintext for
most epochs. They periodically switch to select the first T

lSpeciﬁcally, Loss and Moran [55] proved that the signature scheme
of Libert, Joye, and Yung satisfies the uniqueness property. It is therefore
trivial to derive a threshold PRF scheme in the random oracle model.

transactions in their buffer. Doing so can keep the efficiency
as HoneyBadgerBFT and BEAT, while ensuring any trans-
action cannot be censored for too long.

On the one hand, EPIC eliminates the usage of any thresh-
old encryption scheme, thereby potentially improving the
performance of asynchronous BFT. On the other hand, the
periodical switch for selecting transactions in a FIFO manner
may reduce performance. Therefore, we must experimentally
verify which of the above two factors will dominate the
performance overhead.

Loss and Moran [55] claimed that they obtained the first
adaptively secure ABA protocol running in O(n?) commu-
nication complexity by using the LM-LJY threshold PRF
to obtain common coins for the MHR ABA. The scheme,
unfortunately, has the same liveness issue as reported [1]. In
contrast, EPIC combines the LM-LJY threshold PRF and the
Cobalt ABA to obtain an adaptively secure ABA protocol
running in O(n?) communication complexity.

As the LM-LJY threshold PRF scheme is the only thresh-
old cryptographic scheme used in EPIC, we just need to
build a decentralized key generation protocol for the LM-
LJY threshold PRF scheme. A decentralized key generation
protocol has already been described in the same paper by
Libert, Joye, and Yung [53]. The key generation algorithm
assumes a broadcast channel and private and authenticated
pairwise channels. Most cryptographic and multi-party com-
putation systems assuming broadcast channels simply use
best-effort broadcast (see [40] and references therein) and
therefore do not provide the fault tolerance needed. We pro-
vide a concrete instantiation using Bracha’s broadcast [16]
and an implementation for the protocol. Our key generation
process works in synchronous environment, tolerating up to
n/2 Byzantine faulty replicas.

VI. EPIC

In this section, we describe the design of EPIC. EPIC
follows the ACS framework and has an RBC phase and an
ABA phase. Different from HoneyBadgerBFT and BEAT,
EPIC achieves adaptive security and decentralized key gen-
eration. Figure 2 describes the EPIC protocol using RBC
and ABA in a black-box manner.

We begin with a high-level overview. The protocol pro-
ceeds in epochs numbered by s (initialized as 0). In each
epoch, replicas select a subset of transactions as a proposal
from their transaction buffer and agree on a set of transac-
tions containing the union of the proposals of at least n — f
replicas. Let B be the batch size of the transactions for
an epoch. In an epoch, each replica proposes transactions
of size b = [B/n] (the batch size for a replica). In the
RBC phase, replicas use RBC to broadcast the proposals. In
the ABA phase, n parallel ABA instances are run. The i-th
ABA instance is used to agree on whether the transactions
from replica p; have been delivered in the RBC phase.
If a correct replica p; terminates the i-th ABA instance

Initialization
buf < 0 {transaction buffer}
B {batch size}
i, 0 {parameters for transaction selection}
s+ 0 {epoch number}
i {replica id}
{RBC;},» {n RBC instances where j is the sender of RBC;}
{ABA;}, {n ABA instances}
epoch s
ifs=0,---,u—1mod (u+9)
let value be a random selection [B/n] of transactions for the
first B elements in buf
else let value be the first [B/n] transactions in buf
input value to RBC;
upon delivery of value; from RBC;
if ABA; has not yet been provided input, input 1 to ABA;
upon delivery of 1 from ABA; and value; from RBC;
output < output U value;
upon delivery of 1 from at least n — f ABA instances
for each ABA; instance that has not been provided input
input 0 to ABA;
upon termination of all the n ABA instances
deliver output
s s+1

Figure 2. EPIC algorithm for p;.

with 1, the transactions from p; are delivered. Otherwise,
the transactions will not be included. We follow Ben-Or et
al. [12] (and HoneyBadgerBFT and BEAT), ensuring at least
n — f ABA instances terminate with 1, and thus the union
of the transactions from at least n — f replicas are delivered.
To this goal, every replica abstains from proposing 0 until
n — f ABA instances have been delivered by the replica.
Each ABA instance terminates with probability 1/2 for each
round. As EPIC must wait for all ABA instances to finish,
the running time of EPIC is O(log N) in expectation.

As in HoneyBadgerBFT and most BEAT instances, EPIC
uses an adaptively secure RBC — AVID broadcast [22].
In the following, we specify other building blocks for
EPIC:

the transaction selection approach in EPIC,

the decentralized key distributed algorithm for EPIC,
EPIC’s ABA protocol—the Cobalt ABA, and

the adaptively secure common coin protocol from the
LM-LJY threshold PRF scheme.

Transaction selection for EPIC. EPIC uses a novel trans-
action selection approach which is distinguished from prior
asynchronous BFT protocols such as SINTRA, HoneyBad-
gerBFT, and BEAT.

In SINTRA, replicas maintain a log of transactions ac-
cording to the order they are received and replicas select as
input the first subset of transactions in the transaction buffer.
We call the approach FIFO selection. The approach can be
easily shown to achieve liveness but lead to low system
throughput. This is because the transactions delivered are
unions of the transactions selected by replicas, and replicas

tend to select the same transactions in each epoch.

In HoneyBadgerBFT (and BEAT), replicas propose ran-
domly selected sets of transactions to improve throughput.
Doing so directly causes a liveness issue, as a network
adversary can censor certain transactions so that they will not
be delivered. Thus, HoneyBadgerBFT (and BEAT) choose
to use threshold encryption to avoid censorship. In their
approach, replicas first encrypt the proposals and then
decrypt them collectively when transactions in ciphertext
are delivered. We call this approach ETD (standing for
“encrypt-then-decrypt”’). HoneyBadgerBFT uses the pairing-
based threshold encryption scheme of Baek and Zheng,
while BEAT uses the threshold encryption scheme of Shoup
and Gennaro [71]. Both schemes are efficient but statically
secure only.

In EPIC, we take a different approach without using
threshold encryption. We ask replicas to select random
transactions in plaintext for most epochs (e.g., % of the total
epochs) and periodically switch to the FIFO selection. The
strategy is performed deterministically for all replicas.

More formally, let s be the epoch number initially num-
bered 0. Let 1 and & be two system parameters determining
how often the protocol switches between the two modes.
In EPIC, replicas can first perform random selection for
1t epochs and then the FIFO selection for ¢ epochs. Our
approach can be generalized to many other scenarios, as long
as the switching strategy is deterministic (and known to all
replicas), and the system can perform the FIFO selection for
a non-negligible fraction of epochs (to ensure liveness).

Our transaction selection approach can keep the efficiency
of HoneyBadgerBFT and BEAT, while avoiding censorship.
Since our approach can be somewhat viewed as a hybrid of
HoneyBadgerBFT and SINTRA, we call it HYB (standing
for “hybrid”).

The HYB approach eliminates the usage of (expensive)

threshold encryption scheme, which would improve effi-
ciency. The periodical transaction switch to the FIFO se-
lection may reduce performance. Besides, the approach pro-
vides trade-offs between latency and throughput. Roughly, if
1 is reasonably larger than 4, the system favors throughput
over latency, and otherwise the opposite is the case.
The Cobalt ABA. HoneyBadgerBFT and BEAT use the
MHR protocol in the ABA phase. It was reported that
the MHR protocol is not live if being instantiated using
any existing cryptographic common coin protocols [1].
(Essentially, the MHR protocol makes a strong common
coin assumption which existing cryptographic common coin
protocols fail to satisfy.) Besides, the MHR protocol in
HoneyBadgerBFT and BEAT achieve static security due to
the use of statically secure common coin protocols.

EPIC thus enhances the ABA choice in HoneyBadgerBFT
and BEAT in two aspects. First, we use the Cobalt ABA pro-
tocol [58] instead of the MHR ABA to resolve the liveness
issue. Second, we instantiate the Cobalt ABA protocol using

Initialization

r+0 {round}
esto < Vinput {set input for round 0 to initial input}
round r

broadcast bval(est)

upon receiving bval(v) from f + 1 replicas
if bval(v) has not been sent, broadcast bval(v)

upon receiving bval(v) from 2f 4+ 1 nodes
bin_values <+ bin_values U {v}

wait until bin_values # 0 {move to the second step}
broadcast aux(v) where v € bin_values

upon receiving n — f aux() such that the set of values vals the

messages is a subset of bin_values

{broadcast input}

broadcast conf,(vals) {move to the third step}
upon receiving n — f conf,() such that the set of values vals
is a subset of bin_values
¢ < Coin()
if vals = {p}
estry1 < p
if p = c, deliver b
else est, 41 < ¢
r—r+1

{obtain common coin}

{terminate the protocol}
{enter the next round}

Figure 3. The MHR and Cobalt ABA protocol. The Cobalt ABA includes
the boxed code, while the MHR ABA does not.

the adaptively secure LM-LJY threshold PRF scheme.

The MHR and Cobalt ABA protocols are illustrated in
Figure 3, where the Cobalt ABA includes the boxed code
but the MHR ABA does not include. Specifically, the MHR
protocol has two to three steps in each round. In the first
step, all replicas broadcast their input. If a replica receives
f + 1 matching input value that is different from its input,
it triggers the second step by broadcasting the value. In the
last step, if a replica receives 2f + 1 matching value v, it
broadcast an aux(v). Next, if a replica receives 2f +1 aux()
messages, it either uses the only available binary value from
the aux() messages or the common coin value to enter the
next round. The livenss issue for MHR protocol is due to
the usage of the cryptographic common coin. The adversary
(and network scheduler) can learn the value of the common
coin and manipulate the sequence of messages received by
other replicas to make the protocol never terminate. To solve
the issue, the Cobalt ABA protocol introduces one more step
in each round. In the Cobalt ABA protocol, each replica
needs to additionally broadcast the values received in the
aux() step. We use the Cobalt ABA to obtain an adaptively
secure ABA protocol running in O(n?) communication
complexity.

The additional step in the Cobalt ABA protocol can
be significant, as the Cobalt ABA only has three or four
steps in each round and it may run in several rounds (two
on average). On the other hand, it was shown that some
ABA protocols may terminate faster than expected (in a
small-scale setting) [62,63]. It is natural to ask what the
performance penalty of both BEAT and EPIC using the
Cobalt ABA would be.

Distributed key generation. EPIC uses one threshold cryp-
tographic primitive only, the LM-LJY adaptively secure
threshold PRF. The threshold PRF scheme is the adaptively
secure threshold PRF scheme of Loss and Moran [55]
which is built from the adaptively secure threshold signature
scheme of Libert, Joye, and Yung [53]. If the key generation
for the threshold PRF is decentralized, so is EPIC.

In fact, a decentralized key generation protocol has been
described in the same paper by Libert, Joye, and Yung [53],
but no implementation is provided. The key generation
algorithm assumes a broadcast channel and private and
authenticated pairwise channels.

While (most of) existing distributed cryptographic and
multi-party computation systems [40] relying on broad-
cast channels simply use best-effort broadcast, we do pro-
vide a concrete instantiation using Bracha’s broadcast [16].
Bracha’s broadcast has three steps, achieving adaptive secu-
rity in asynchronous environments. It is straightforward to
build a synchronous version for it. We describe the EPIC
distributed key generation protocol in Figure 4.

Though a distributed key generation protocol should

ideally work in asynchronous environments, our protocol
works in synchronous environments only. We made the
system decision, in part because the protocol is simpler
to implement than existing asynchronous protocols [45,49].
Another reason is that the key generation procedure is a one-
time event, and replicas can set an adequately large timeout
value to ensure safety. Note that key generation protocol can
tolerate up to 5 Byzantine failures, while an asynchronous
key generation protocol only tolerates up to 7 Byzantine
failures.
Common coin protocol. For the adaptively secure common
coin protocol, we use the LM-LJY threshold PRF scheme
of Loss and Moran [55] based on the adaptively secure
threshold signature scheme of Libert, Joye, and Yung [53]
(Figure 5). The threshold PRF scheme requires four pairing
computation for signature verification. It is thus twice more
expensive than the threshold PRF scheme in HoneyBad-
gerBFT and much more expensive than the pairing-free
threshold PRF scheme in BEAT. The threshold LM-LJY
PRF scheme provides adaptive security under the Symmetric
eXternal Diffie-Hellman (SXDH) assumption.

Finally, we illustrate in Figure 6 the common coin proto-
col based on the LM-LJY (f + 1,n) threshold PRF scheme
(Eva, Vrf, FCom).

VII. IMPLEMENTATION

The entire EPIC library includes 13,000 lines of Python
code, among which 900 lines of code are written for key
distribution and 1,200 lines of code are used for evaluation.
In total, we implemented four asynchronous BFT protocols
summarized in Table I. For both EPIC and EPIC-MHR, we
use the BN256 pairing curve to understand the performance
overhead incurred by threshold cryptography.

Common public parameter setup: Let BG = (q, G, G,Gr, e)
be an asymmetric bilinear group, where G, G, and Gr are cyclic
groups of prime order ¢, g and § are generators for G, and e: G X
G — Gr is an efficiently computable bilinear map.

e p; chooses random polynomials for k € {1,2}: A;x[X] =
aiko + @i X + - 4+ amp X and Big[X] = bigo + bia X +
S bikfo of degree f. p; runs RBC to broadcast Cirq =
gk gP 5 for d € [0..f]. pi sends {Au(j), Bix(j) ey o ;
for j € [1..n].

e p; sends a complaint against p; for any of the conditions:

— p; received {A;1(3), Bjx(i)}2_, from p; and checks

f
gAjk(Z)gBik(Z) _ H C;Zl for

d=0

k=12 (1),

but these equalities do not both hold,
— p; did not receive values from p;, or
— p; received more than one set of values.
e Upon receiving a complaint from p;, p; runs RBC to broadcast
{Aix(4), Bir(j)Y_, that satisfy (1).
e p; marks p; as disqualified if
— p; received more than f complaints against p;, or
— p; answered a complaint with values that falsify (1).
p; then builds the set of non-disqualified replicas Q.

e p; computes (pk,vki,- - ,vkn, sk;) as follows:
pk H Ciko,
i€eQ
¢ d ¢ d
WFUHFWHH%>Mﬁ@m
u€eQR d=0 ueQR d=0

ski { ST A(), > Bjk(i)}z_l

JEQ JEQ

Figure 4. The distributed key generation algorithm FGen for
(f + 1,n) threshold PRF for replica p;, where the output of p; is
(pk,vki,- - ,vkn, sk;). The algorithm is executed only once and tolerates

5 corruptions. The first three steps are interactive, while the last two steps

involve local computation only.

BEAT is our baseline protocol. We used the BEATO
protocol which leverages more efficient cryptography than
HoneyBadgerBFT. While using BEATO0, we call our baseline
protocol BEAT for simplicity.

We use the BN256 curve [10] for the LM-LJY threshold
PRF scheme. BN256 and BN254 curves achieve 110-bit
security and have been widely used in many other BFT
and blockchain systems (e.g., SBFT [37]). We modified the
Charm Python library [6] to wrap a version of the relic C++
library [2] and then implemented the LM-LJY threshold PRF
scheme using the modified Charm library.

VIII. EVALUATION

Overview. We evaluate the protocols on Amazon EC2 using
up to 91 virtual machines (VMs) in different regions across
five continents. Each VM is the t2.medium type with

Common public parameter setup: The same as Figure 4; besides,
define two hash functions H: {0,1}* — G?, H': G* — {0,1}.
Eva(pk, m, sk;)
(hl, hz) < H(m)
parse sk; as {Ay[i], B[i]}2_1
2 Hi:l h;Ak[ll; v — Hi:l h;Bk[’L]
return o; < (z;,v;).
Vrf(vk, m, vk:,y;)
parse o; as (zi,v;) and vk; as (Vis, Vas)
(h1, hs) = H(m)
if e(2i,9) - e(vi, §) - [1, e(h1,vk;) = 1 return 1
else return 0
FCom(vk, m, {0} jes)
upon receiving f + 1 valid PRF shares {0} };jcs
for j € S, parse o; as (zj,v;)
2 Hjes ziAj'S(O); v e Hjes%A"‘S(O)
{A,s denotes the Lagrange polynomial for j € S}
return o < H'(z,v).

Figure 5. The LM-LJY
(Eva, Vrf, FCom).

(f + 1,n) threshold PRF scheme

upon receiving C'oin(sid)
m < sid
o < Eva(pk,m, sk;)
broadcast (i, m, o;)
upon receiving f + 1 valid threshold PRF shares {o\}recs on m
return o < FCom(vk, m, {ok }res)

Figure 6. The common coin protocol from the LM-LIY (f + 1,n)
threshold PRF scheme, where sid is a session identifier and consists of
an epoch number s, a round number 7, and an ABA instance number
j € [l.n)].

two vCPUs and 4GB memory, running Ubuntu 16.04. We
evaluate the protocols in both LAN and WAN settings,
where the VMs are launched in the same EC2 region in the
LAN setting, and the VMs are evenly distributed in different
regions in the WAN setting. We evaluate the protocols using
different network sizes and batch sizes.

We evaluate the protocols with different network sizes. We
use f to represent the network size, and the total number of
replicas is n = 3f + 1. Recall B and b = [B/n] are the
batch size for the protocol and the batch size for transactions
proposed by each replica, respectively. All transactions are
of size 250 bytes.

When evaluating latency only, we have b = 1, where
each replica proposes a single transaction. When evaluating
throughput, we vary the size of b until the throughput reaches
its peak and stabilizes.

The system throughput is evaluated according to the
actual delivered transactions using real transaction buffers.
In particular, overlapping transactions delivered are counted
once. Unless stated otherwise, we let the transaction buffer
at each replica be 10 - b. Our approach is more precise than
HoneyBadgerBFT and BEAT. In their approaches, replicas
use local random coins to generate independently distributed
transaction sets from a large space, and the probability of

Protocol ABA Common Coin Transaction Selection | Liveness Adaptive Security
BEAT MHR [64] CKS [20] ETD No No
BEAT-Cobalt | Cobalt [58] CKS [20] ETD Yes No
EPIC-MHR MHR [64] LM-LJY [53,55] HYB No Yes
EPIC Cobalt [58] LM-LJY [53,55] HYB Yes Yes

Table 1
THE FOUR IMPLEMENTED ASYNCHRONOUS BFT PROTOCOLS.

any two sets being overlapping is negligible. Our approach
is needed to understand the exact impact of using various
transaction selection approaches.

We run each experiment five times, and each experiment
runs 20 epochs. We then calculate the average results. For
HYB in EPIC, we let x4 be four and § be one. Namely, we
first run four epochs using random selections and then one
epoch using the FIFO selection.

Our results show that EPIC achieves adaptive security
with low overhead when f is small. In the WAN setting,
EPIC has only 2%, 5%, 21% lower throughput than BEAT-
Cobalt when f = 1,2, 5, respectively. When f further grows,
the performance overhead for EPIC compared with BEAT-
Cobalt is significantly higher. When f = 30, EPIC achieves
68% lower peak throughput than BEAT-Cobalt.

Besides the conventional metrics (latency, throughput,
and scalability), our evaluation also aims to identify the
performance bottlenecks using a variety of experiments.

E5 BEAT [DBEAT-Cobalt e
L5 |CJEPIC-MHRED EPIC | 1
1;22
I 1.05
g 1l
)
Q
=
B2
<
A
0.5
0.22(3‘.2.6
0.060.07
0 5’“_”‘ ‘
LAN WAN

Figure 7. Latency for f = 1 in both LAN setting and WAN setting under
no contention.

MHR ABA vs. Cobalt ABA. Both HoneyBadgerBFT and
BEAT use the MHR ABA. The Cobalt ABA solves the
liveness problem at the cost of an additional step in each
round. We find that in all of our experiments, BEAT (using
MHR) outperforms BEAT-Cobalt and EPIC-MHR outper-
forms EPIC (using Cobalt) in terms of both latency and
throughput. We also find that the performance degradation
caused by the extra step in the LAN setting is small but
certainly noticeable, while it becomes more visible in the
WAN setting. This is expected, as the network latency
caused by the extra step has a more significant impact in

10

the WAN setting.

103
T T T T T
—5— BEAT - - BEAT-Cobalt —5— EPIC-MHR
- %~ EPIC
15 B
g -
E |
:’ 10 | e
2 & }/
E -
o0
=]
i
E 5f .
0 | | | | |
2 4 6 8 10
Batch Size .103
Figure 8. Throughput of BEAT and EPIC for f = 1 in the LAN setting.
103
T T T T T
—M— BEAT(f=5) —@— BEAT-Cobalt(f=5)— @ll— EPIC-MHR(f=5)
- @~ EPIC (f=5) —=— BEAT(f=1) | BEAT-Cobalt(f=1)
— = = EPIC-MHR(f=1)~ 4 — EPIC (f=1)
20 | *
o
Q
<
2 |
=
=
=
o
=
=0 |
=
S
-
=
H
Batch Size 103
Figure 9. Throughput for f =1 and f = 5 in the WAN setting.

Figure 8 and Figure 9 show the throughput of the BFT
protocols for f = 1 in LAN and WAN environments,
respectively. In the LAN setting, BEAT-Cobalt achieves
0.02% lower throughput than BEAT, and EPIC achieves
1% lower throughput than EPIC-MHR. In the WAN setting,
BEAT-Cobalt achieves 2% lower throughput than BEAT and
EPIC achieves 8% lower throughput than EPIC-MHR. As
for latency, we show in Figure 7 BEAT-Cobalt has 16%-34%
higher latency than BEAT and EPIC has 18%-31% higher
latency than EPIC-MHR.

Adaptive vs. Static security. We compare EPIC with

4|75~ BEAT —e—BEAT-Cobalt i
EPIC

—+—EPIC-MHR —+—

Latency (Sec)

10
103

0 2 4 6 8
Throughput (tx/sec)

Figure 10. Latency vs throughput for f = 1 in the WAN setting.

BEAT-Cobalt, a live, asynchronous BFT protocol with static
security. As shown in Figure 7-13, EPIC protocols con-
sistently achieve lower throughput and higher latency than
BEAT-Cobalt. This is mainly due to the fact that LM-LJY
involves more expensive cryptographic computation. The
performance difference in the WAN environment between
the two protocols is relatively small: EPIC has 13% higher
latency and 5% lower throughput than BEAT-Cobalt. In the
LAN setting, the difference is considerably larger where
the peak throughput of EPIC is 29% lower than that of
BEAT-Cobalt. Besides, we show latency vs. throughput in
Figure 10. We observe that for both BEAT and EPIC, their
latency increases dramatically when the throughput is close
to 9,000 tx/sec.

Transaction selection. We evaluate the transaction selec-
tion approach (HYB) for EPIC in both LAN and WAN
environments. In our experiments, we let § be one and run
100 epochs with different 1 values. We run the experiments
using f = 1 and varying b sizes. As we observe similar
results for different b sizes, we selectively present the results
for b 1000 in Table II. Our experiment shows our
HYB strategy provides efficient trade-offs between latency
and throughput: if p is small, the system achieves lower
throughput in both LAN and WAN settings.

m LAN WAN
2 | 5684.10 | 1147.02
377 76650.40 | 1341.90
4710466 7] 1433.63
57738817 | 1450.97
1077 77055.31 7] 1605.40
1577 78182.70 | 1651.24
20| 8239.33 7| 166264
50| 8409.91 | 1667.20
100 7| 8466.72 7| 1708.36
Table II

THROUGHPUT OF EPIC IN BOTH LAN SETTING AND WAN SETTING
WHEN f = 1 AND § = 1. EACH EXPERIMENT IS RUN FOR 100 EPOCHS.

11

-10?

25
’| [EBEAT-Cobalt EEn EPIC
20F 3

3 £
2 tt
ERUE
E] ol
=% [
= [N
2 10 ek
£t
& Jies
5| e
M
hli
i
pli
i
0 bk
f=1

Figure 11. Average throughput per replica of BEAT-Cobalt and EPIC

when b = 5000 in the WAN setting as f increases.
102
200 -

150 -

100 -

Throughput (tx/sec)

rer

50

rrrrrr
rereee

rereeer
rrrecreeee

f

@
Il
—

@

Figure 12. Throughput of BEAT-Cobalt and EPIC when b = 5000 in the
WAN setting as f increases.

Scalability. We evaluate the scalability of all our imple-
mented protocols by varying f from 1 to 30. To better
present our results, we further distinguish (total) throughput
TH in the conventional sense and the average throughput
per replica AT. The latter is defined as the actual average
delivered transactions per second proposed by each replica.
In other words, the total throughput is the aggregation of
average throughput per replica. Existing protocols report
different throughput. Specifically, HoneyBadgerBFT and
BEAT report different throughput numbers where Honey-
BadgerBFT reported for T'H (without considering over-
lapped transactions proposed by different replicas) and
BEAT reported for AT. Although the (total) throughput
represents the actual system throughput, we do find that both
total throughput and average throughput are worth reporting.
Specifically, the average throughput can better illustrate the
performance downgradation when the network size grows.
In comparison, the total number of proposed transactions
grows as the network size increases since replicas all propose
transactions concurrently. Therefore, the total throughput
does not necessarily downgrade as f increases. We report the
average throughput in Figure 11 and the (total) throughput
in Figure 12 and Figure 13.

We evaluate the throughput by varying b and observe a
similar trend in all protocols. We report the throughput of
BEAT-Cobalt and EPIC as b increases in Figure 13. We also
report the average and total throughput for BEAT-Cobalt and

103

30 T T T T
—a f=1—+—f=2 < f=5
——f=10-=-f=15—e—f =20
2 ,
B
=]
2.
=
on
=
2 i
=
H
Batch Size 103
Figure 13. Throughput for BEAT-Cobalt and EPIC in the WAN setting

as f increases. BEAT-Cobalt and EPIC are represented in solid and dashed
lines, respectively.

EPIC for b = 5000. First, all the protocols achieve lower
average throughput per replica when f grows. When f =
1, EPIC has 2% lower average throughput per replica than
BEAT-Cobalt. When f = 2 and 5, EPIC has about 5% and
21% lower average throughput per replica, respectively. But
if f further increases, the difference for average throughput
becomes significantly larger. (When f = 10, the peak (total)
throughput of EPIC is around 10, 000 tx/sec.)

For the total throughput, however, we find that as f
increases, the throughput for all asynchronous BFT pro-
tocols first increases and then decreases. This is (quite)
expected, though it has been formally reported by Hon-
eyBadgerBFT or BEAT. Indeed, when f first grows, the
number of concurrently proposed transactions grows signif-
icantly, making the system throughput higher than that with
smaller network sizes. When f further grows, the average
throughput per replica becomes much smaller; even if the
average throughput per replica gets multiplied by a large
dtz > (n — f) (the number of ABA instances that deliver
1), the total throughput remains smaller. In our experiments
(using b = 5000), we observe that BEAT-Cobalt achieves
the largest throughput when f = 15, and the throughput of
EPIC is the largest when f = 5.

Distributed key generation. Figure 14 summarizes the
latency of our (f 4 1,n) distributed key generation protocol
in LAN environments. We evaluate the failure-free scenario,
where all replicas are correct and the non-disqualified set
includes all replicas, and the failure scenario, where there
exists a single malicious replica. We also compare the two
scenarios with a centralized key generation scenario where
there is no interaction. Since the distributed key generation
protocol runs in synchronous environments, we test only
the optimal scenario where the timer equals the message
processing and message transmission delays. Therefore, our
evaluation result can be used to guide the timer setup for the

12

O Failure-free =51 Failure
3 Centralized

13.75

c

Frree
rrrr

6.11

Latency (Sec)

ot
T

rreee
rrree

RN 1.54
0.89 117

I b

(8,15) (10,19)

1.161.17 . NNN
[T
ey [tats NN
HELLM VfEEfo2a 22

0 NN s o dbrrle—

(2,4) 4,7) 6,11)

FECCECCCCCCCCCCCCCCCCECCErrrrrer

rrrecceer

frrrrrrrrrrrrrrrrrrrrrrrrerrrrrrer

—frreercrererr

Figure 14. Latency of (¢,n) distributed key generation vs. centralized key
generation in the LAN setting.

protocol. (Of course, one should setup much larger timers
in practice.) As shown in Figure 14, the distributed key
generation incurs (much) higher latency compared to the
centralized approach. The performance difference between
the failure scenarios and the failure-free scenarios is notice-
able but comparatively small.

IX. CONCLUSION

We design and implement EPIC, an efficient asynchronous
BFT protocol achieving adaptive security and decentralized
key distribution. To build EPIC, we use a combination of
new primitives, including a hybrid approach for transaction
selections. To evaluate EPIC, we mix and match system
building blocks to implement various protocol variants and
identify the performance bottlenecks via extensive evaluation
in LAN and WAN environments. Overall, EPIC is not much
slower than asynchronous BFT protocols with static security.

X. ACKNOWLEDGMENT

We thank Christian Cachin for answering our questions
for adaptive security. We thank the DSN reviewers for their
helpful comments.

REFERENCES

[1] Bug in ABA protocol’s use of common coin. https://github.
com/amiller/HoneyBadgerBFT/issues/59.

(2]
(3]

Relic crypto library. https://github.com/relic-toolkit.

I. Abraham, D. Malkhi, K. Nayak, L. Ren, and A. Spiegel-
man. Solida: A blockchain protocol based on reconfigurable
Byzantine consensus. In OPODIS, 2017.

[4] 1. Abraham, D. Malkhi, and A. Spiegelman. Validated
asynchronous Byzantine agreement with optimal resilience
and asymptotically optimal time and word communication.
arXiv preprint arXiv:1811.01332, 2018.

[5] 1. Abraham, D. Malkhi, and A. Spiegelman. Asymptotically
optimal validated asynchronous Byzantine agreement. In
Proceedings of the Symposium on Principles of Distributed
Computing, pages 337-346. ACM, 2019.

(6]

(7]

(8]

(91

(10]

(11]

[12]

(13]

[14]

(15]

[16]

(17]

(18]

(19]

[20]

J. A. Akinyele, C. Garman, I. Miers, M. W. Pagano,
M. Rushanan, M. Green, and A. D. Rubin. Charm: a frame-
work for rapidly prototyping cryptosystems. J. Cryptographic
Engineering, 3(2):111-128, 2013.

Y. Amir, B. Coan, J. Kirsch, and J. Lane. Prime: Byzantine
replication under attack. IEEE Transactions on Dependable
and Secure Computing, 8(4):564-577, 2011.

P. Aublin, S. B. Mokhtar, and V. Quéma. Rbft: Redundant
Byzantine fault tolerance. In ICDCS, pages 297-306, 2013.

J.-P. Bahsoun, R. Guerraoui, and A. Shoker. Making BFT
protocols really adaptive. In IPDPS, pages 904-913. IEEE,
2015.

P. S. L. M. Barreto and M. Naehrig. Pairing-friendly elliptic
curves of prime order. In Proceedings of the 12th Interna-
tional Conference on Selected Areas in Cryptography, 2006.

M. Ben-Or. Another advantage of free choice: Completely
asynchronous agreement protocols (extended abstract). In
PODC, pages 27-30, 1983.

M. Ben-Or, B. Kelmer, and T. Rabin. Asynchronous secure
computations with optimal resilience. In Proceedings of the
13th annual symposium on Principles of distributed comput-
ing, pages 183-192. ACM, 1994.

P. Berman and J. A. Garay. Randomized distributed agree-
ment revisited. In FTCS-23 The Twenty-Third International
Symposium on Fault-Tolerant Computing, pages 412-419.
IEEE, 1993.

A. Boldyreva. Threshold signatures, multisignatures and blind
signatures based on the gap-diffie-hellman-group signature
scheme. In PKC, pages 31-46, 2003.

G. Bracha. An asynchronous [(n-1)/3]-resilient consensus
protocol. In Proceedings of the third annual ACM symposium
on Principles of distributed computing, pages 154-162. ACM,
1984.

G. Bracha. Asynchronous Byzantine agreement protocols.
Information and Computation, 75(2):130-143, 1987.

M. Burrows. The chubby lock service for loosely-coupled
distributed systems. In Proceedings of the 7th symposium on
Operating systems design and implementation, pages 335—
350. USENIX Association, 2006.

C. Cachin, D. Collins, T. Crain, and V. Gramoli. Byzantine
fault tolerant vector consensus with anonymous proposals.
arXiv preprint arXiv:1902.10010, 2019.

C. Cachin, K. Kursawe, F. Petzold, and V. Shoup. Secure
and efficient asynchronous broadcast protocols. In Annual In-
ternational Cryptology Conference, pages 524-541. Springer,
2001.

C. Cachin, K. Kursawe, and V. Shoup. Random oracles in
constantinople: Practical asynchronous Byzantine agreement
using cryptography. Journal of Cryptology, 18(3):219-246,
2005.

13

(21]

(22]

(23]

(24]

[25]

(26]

(27]

(28]

[29]

[30]

(31]

(32]

(33]

[34]

(35]

(36]

C. Cachin and J. A. Poritz. Secure intrusion-tolerant replica-
tion on the internet. In DSN, pages 167-176. IEEE, 2002.

C. Cachin and S. Tessaro. Asynchronous verifiable informa-
tion dispersal. In SRDS, pages 191-201. IEEE, 2005.

R. Canetti, U. Feige, O. Goldreich, and M. Naor. Adaptively
secure multi-party computation. In STOC 96, 1996.

R. Canetti and T. Rabin. Fast asynchronous Byzantine
agreement with optimal resilience. In STOC, volume 93,
pages 42-51. Citeseer, 1993.

M. Castro and B. Liskov. Practical Byzantine fault tolerance
and proactive recovery. ACM Transactions on Computer
Systems (TOCS), 20(4):398-461, 2002.

A. Clement, E. L. Wong, L. Alvisi;, M. Dahlin, and
M. Marchetti. Making Byzantine fault tolerant systems
tolerate Byzantine faults. In NSDI, volume 9, pages 153—
168, 2009.

M. Correia, N. F. Neves, and P. Verissimo. How to tolerate
half less one Byzantine nodes in practical distributed systems.
In SRDS, pages 174-183. IEEE, 2004.

M. Correia, N. F. Neves, and P. Verissimo. From consensus
to atomic broadcast: Time-free Byzantine-resistant protocols
without signatures. The Computer Journal, 49(1):82-96,
2006.

R. Cramer, I. Damgard, S. Dziembowski, M. Hirt, and
T. Rabin. Efficient multiparty computations secure against
an adaptive adversary. In EUROCRYPT, 1999.

C. Decker, J. Seidel, and R. Wattenhofer. Bitcoin meets strong
consistency. In Proceedings of the 17th International Con-
ference on Distributed Computing and Networking, page 13.
ACM, 2016.

S. Duan, H. Meling, S. Peisert, and H. Zhang. BChain:
Byzantine replication with high throughput and embedded
reconfiguration. In OPODIS, pages 91-106, 2014.

S. Duan, M. K. Reiter, and H. Zhang. BEAT: Asyn-
chronous bft made practical. In Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications
Security, pages 2028-2041. ACM, 2018.

C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the
presence of partial synchrony. Journal of the ACM (JACM),
35(2):288-323, 1988.

I. Eyal, A. E. Gencer, E. G. Sirer, and R. Van Renesse.
Bitcoin-NG: A scalable blockchain protocol. In NSDI, pages
45-59, 2016.

M. I. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility
of distributed consensus with one faulty process. Technical
report, Massachusetts Inst of Tech Cambridge lab for Com-
puter Science, 1982.

R. Friedman, A. Mostefaoui, and M. Raynal. Simple and
efficient oracle-based consensus protocols for asynchronous
Byzantine systems. IEEE Transactions on Dependable and
Secure Computing, 2(1):46-56, 2005.

(371

(38]

(39]

[40]

[41]

(42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

(50]

[51]

[52]

G. Golan-Gueta, I. Abraham, S. Grossman, D. Malkhi,
B. Pinkas, M. K. Reiter, D. Seredinschi, O. Tamir, and
A. Tomescu. SBFT: A scalable and decentralized trust
infrastructure. In DSN, pages 568-580, 2019.

R. Guerraoui, N. Knezevié, V. Quéma, and M. Vukoli¢. The
next 700 bft protocols. ACM Transactions on Computer
Systems, 32(4):12:1-12:45, 2015.

A. Guillevic. Comparing the pairing efficiency over
composite-order and prime-order elliptic curves. In ACNS,
2013.

M. Hastings, B. Hemenway, D. Noble, and S. Zdancewic.
Sok: General purpose compilers for secure multi-party com-
putation. In S&P, 2019.

J. Hendricks, G. R. Ganger, and M. K. Reiter.
distributed erasure-coded data. In PODC, 2007.

Verifying

J. Hendricks, S. Sinnamohideen, G. R. Ganger, and M. K.
Reiter. Zzyzx: Scalable fault tolerance through Byzantine
locking. In DSN, pages 363-372. IEEE, 2010.

P. Hunt, M. Konar, F. P. Junqueira, and B. Reed. Zookeeper:
Wait-free coordination for internet-scale systems. In USENIX
annual technical conference, volume 8. Boston, MA, USA,
2010.

Joonsang Baek and Yuliang Zheng. Simple and efficient
threshold cryptosystem from the gap diffie-hellman group. In
GLOBECOM 03, 2003.

A. Kate, Y. Huang, and I. Goldberg. Distributed key genera-
tion in the wild. IJACR Cryptology ePrint Archive, 2012.

V. King and J. Saia. Breaking the o(n?) bit barrier: scalable
Byzantine agreement with an adaptive adversary. Journal of
the ACM (JACM), 58(4):18, 2011.

E. K. Kogias, P. Jovanovic, N. Gailly, I. Khoffi, L. Gasser,
and B. Ford. Enhancing bitcoin security and performance
with strong consistency via collective signing. In USENIX
Security, pages 279-296, 2016.

E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly, and
B. Ford. Omniledger: A secure, scale-out, decentralized
ledger. IACR Cryptology ePrint Archive, 2017:406, 2017.

E. Kokoris-Kogias, A. Spiegelman, D. Malkhi, and 1. Abra-
ham. Bootstrapping consensus without trusted setup: Fully
asynchronous distributed key generation. IACR Cryptology
ePrint Archive, 2019.

R. Kolta, L. Alvisi, M. Dahlin, A. Clement, and E. Wong.
Zyzzyva: speculative Byzantine fault tolerance. ACM Trans-
actions on Computer Systems, 27(4):7:1-7:39, 2009.

K. Kursawe and V. Shoup. Optimistic asynchronous atomic
broadcast. In ICALP, pages 204-215, 2005.

L. Lamport, R. Shostak, and M. Pease. The Byzantine gener-
als problem. ACM Transactions on Programming Languages
and Systems (TOPLAS), 4(3):382-401, 1982.

14

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

B. Libert, M. Joye, and M. Yung. Born and raised dis-
tributively: Fully distributed non-interactive adaptively-secure
threshold signatures with short shares. Theoretical Computer
Science, 645:1-24, 2016.

B. Libert and M. Yung. Adaptively secure non-interactive
threshold cryptosystems. In ICALP, 2011.

J. Loss and T. Moran. Combining asynchronous and syn-
chronous Byzantine agreement: The best of both worlds.
IACR Cryptology ePrint Archive, 2018:235, 2018.

D. Lu, T. Yurek, S. Kulshreshtha, R. Govind, A. Kate, and
A. Miller. Honeybadgermpc and asynchromix: Practical
asynchronous mpc and its application to anonymous com-
munication. In CCS 19, 2019.

L. Luu, V. Narayanan, C. Zheng, K. Baweja, S. Gilbert, and
P. Saxena. A secure sharding protocol for open blockchains.
In CCS, pages 17-30. ACM, 2016.

E. MacBrough. Cobalt: Bft governance in open networks.
arXiv preprint arXiv:1802.07240, 2018.

J.-P. Martin and L. Alvisi. Fast Byzantine consensus.
IEEE Transactions on Dependable and Secure Computing,
3(3):202-215, 2006.

A. Miller, Y. Xia, K. Croman, E. Shi, and D. Song. The honey
badger of bft protocols. In Proceedings of the SIGSAC Con-
ference on Computer and Communications Security, pages
31-42. ACM, 2016.

H. Moniz, N. F. Neves, and M. Correia. Byzantine fault-
tolerant consensus in wireless ad hoc networks. IEEE Trans-
actions on Mobile Computing, 12(12):2441-2454, 2012.

H. Moniz, N. E. Neves, M. Correia, and P. Verissimo. Ex-
perimental comparison of local and shared coin randomized
consensus protocols. In SRDS, pages 235-244, 2006.

H. Moniz, N. F. Neves, M. Correia, and P. Verissimo. Ritas:
Services for randomized intrusion tolerance. IEEE transac-
tions on dependable and secure computing, 8(1):122-136,
2008.

A. Mostefaoui, M. Hamouma, and M. Raynal. Signature-free
asynchronous Byzantine consensus with ¢ < n/3 and o(n?)
messages. In PODC, pages 2-9. ACM, 2014.

R. Pass and E. Shi. Hybrid consensus: Efficient consensus in
the permissionless model. In DISC, 2017.

R. Pass and E. Shi. Thunderella: blockchains with optimistic
instant confirmation. In Annual International Conference on
the Theory and Applications of Cryptographic Techniques,
pages 3-33. Springer, 2018.

M. O. Rabin. Randomized byzantine generals. In SFCS,
pages 403-409. IEEE, 1983.

H. V. Ramasamy and C. Cachin. Parsimonious asynchronous
Byzantine-fault-tolerant atomic broadcast. In OPODIS, 2005.

[69]

[70]

(71]

[72]

(73]

[74]

[75]

[76]

(771

(78]

F. B. Schneider. Implementing fault-tolerant services using
the state machine approach: A tutorial. ACM Computing
Surveys (CSUR), 22(4):299-319, 1990.

V. Shoup. Practical threshold signatures. In EUROCRYPT
2000.

V. Shoup and R. Gennaro. Securing threshold cryptosystems
against chosen ciphertext attack. J. Cryptol., 15(2):75-96,
Jan. 2002.

Y. J. Song and R. van Renesse. Bosco: One-step Byzantine
asynchronous consensus. In DISC, pages 438-450. Springer,
2008.

J. Sousa, E. Alchieri, and A. Bessani. State machine replica-
tion for the masses with bft-smart. In DSN, pages 355-362,
2014.

T. Srikanth and S. Toueg. Simulating authenticated broad-
casts to derive simple fault-tolerant algorithms. Distributed
Computing, 2(2):80-94, 1987.

S. Toueg. Randomized byzantine agreements. In PODC,
pages 163-178. ACM, 1984.

M. Yin, D. Malkhi, M. Reiterand, G. G. Gueta, and 1. Abra-
ham. Hotstuff: Bft consensus with linearity and responsive-
ness. In 38th ACM symposium on Principles of Distributed
Computing (PODC), 2019.

M. Zamani, M. Movahedi, and M. Raykova. Rapidchain: A
fast blockchain protocol via full sharding. In CCS, pages
931-948, 2018.

P. Zielinski. Optimistically terminating consensus: All asyn-
chronous consensus protocols in one framework. In ISPDC,
pages 24-33. IEEE, 2006.

15

