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ABSTRACT
We present a novel study of reliable broadcast in interde-
pendent networks, in which the failures in one network may
cascade to another network. In particular, we focus on the
interdependency between the communication network and
the power grid network, where the power grid depends on
the communication network for control and the communica-
tion network depends on the grid for power. In this paper,
we propose a best effort broadcast algorithm to handle crash
failures in the communication network that may cause cas-
cading failures, where all the correct nodes deliver the mes-
sage if the sender is correct. At the core of our work is a
fully distributed algorithm for the nodes to analyze cascad-
ing failures prior to their presence so that failures can be
handled accordingly. Our evaluation results show that the
algorithm handles cascading failures with little overhead.
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1. INTRODUCTION
Modern network services are becoming increasingly de-

pendent on infrastructure networks such that a single failure
may cascade to another network and cause the failures of all
the dependent networks. Such failures may cascade multiple
times in a zigzag manner between the networks and cause
widespread failures. A particular example is the interde-
pendency between the power grid and the communication
network. The 2003 Italian blackout [15], 2003 U.S. North-
eastern power outage [1, 6], and 2011 Southwest blackout [2]
are all examples of such interdependency. For instance, dur-
ing the 2003 U.S. Northeastern power outage, 3,175 com-
munication networks suffered from abnormal connectivity
outage [6]. A number of previous efforts focus on the anal-
ysis of the robustness of interdependent networks. To the
best of our knowledge, none of the previous work formalized
the problem between the communication network and other
interdependent networks and studied resilient solutions to
handle such failures.

We study reliable broadcast in a multihop communica-
tion network c-network and a power grid network p-network,
which are mutually dependent. The c-network is composed
of a set of c-nodes (e.g., routers, sensors, etc.) connected
by communication links and the p-network is composed of a
set of p-nodes (e.g., power substations) connected by power
lines. In order for the nodes to operate, a c-node must re-
ceive power from at least one p-node and a p-node must re-
ceive control signals from at least one c-node. We model the
interdependency using graphs. As illustrated in Figure 1,
when c2 fails, it cannot provide control signals to p1 and
p3. Node p1 can still operate since c1 has an edge to it.
However, p3 fails and it cannot provide power to c3 and c4.
Node c3 still operates with power from p2. Since no other
p-nodes have edges to c4, c4 fails. In the communication
network, a c-node sends a message through certain paths to
some c-nodes. C-nodes are subject to crash failures, which
can be reliably detected by other c-nodes. In comparison,
correct nodes faithfully follow the protocols. Our goal is to
design a solution that guarantees best effort broadcast de-
spite the presence of crashing c-nodes, where all the correct
nodes deliver the messages if the sender is correct.

We use soft links to handle cascading failures, which are
backup links that are activated to handle the failures of pri-
mary communication links. The idea of soft links is not new.
Specifically, in an independent network, in order to handle
the failure of a neighbor, a node ci only needs to maintain a
soft link to the neighbor of its neighbor so that messages can
still be sent along the path. However, in interdependent net-
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Figure 1: Cascade of a single failure in the interdependent model between a c-network of 5 c-nodes and a
p-network of 3 p-nodes.

works, since failures occur in a widespread cascading fashion,
it is possible that the neighbor of c′is neighbor also fails. In
fact, it is extremely challenging to determine how many soft
links are enough to handle even one single failure without
knowing all the cascading effect. Indeed, without a carefully
designed algorithm, nodes cannot analyze the cascading fail-
ures to handle them. A straightforward solution is to rely
on a powerful and centralized computing agent/node to an-
alyze the failures for each node. However, it will cause large
communication and computing overhead for the agent since
each node must communicate with the centralized agent to
learn the result and maintain soft links. Although it might
be possible to build a set of distributed agents, it can still
cause high communication and maintenance overhead.

We present a best effort broadcast algorithm where nodes
analyze cascading failures and maintain the information in
a fully distributed manner. At the core of our approach are
two key sub-algorithms: f-information collection and link
management. The f-information collection is a communi-
cation algorithm for the c-nodes to analyze and collect the
information of all the cascading failures caused by a single
c-node. Based on the f-information of each neighbor, a c-
node can learn the next correct c-node in each path so as
to maintain soft links. On the other hand, the link manage-
ment is a mechanism for the nodes to update their routing
tables in the presence of failures so that nodes can manage
their soft links for long term robustness. As a result, soft
links can be correctly maintained and best effort broadcast
can be guaranteed if there are no failures during message
transmission in the algorithm.

Due to the use of the above approach, best effort broad-
cast is achieved with the following benefits. First, nodes
only need to maintain minimum information in order to an-
alyze the failures. Indeed, since we use a distributed failure
analysis algorithm, nodes do not need to maintain the whole
network. Second, the information of cascading failures is col-
lected in a fully distributed manner. Last but not least, our
algorithm enables very effective usage of soft links. In or-
der to handle one c-node failure, each c-node maintains only
one soft link although a set of consecutive c-nodes may fail
as a cascading effect. This guarantees that messages can
be reliably broadcast to every correct c-node in the com-
munication network. Our evaluation results show that our
algorithm achieves low packet drop rate and generates little

overhead to the normal network traffic. The tradeoff is a
slightly longer delay in handling failures.

Our paper makes the following contributions:

We present the first reliable broadcast model in the inter-
dependent networks. We study best effort broadcast in
the presence of crash failures in the communication net-
work, which may cause cascading failures in both power
grid network and communication network.
We present a fully distributed algorithm for the nodes to
analyze the cascading failures. Each node maintains min-
imum information for the dependent network.
We use inactive soft links in addition to the primary links
in the communication network to achieve best effort broad-
cast. In order to handle one failure, each c-node only
maintains one soft link although multiple cascading fail-
ures may occur due to a single failure.
Our evaluation results show that our algorithm achieves
low packet drop rate and generates little overhead to the
normal network traffic. The tradeoff is a slightly longer
delay in handling failures.

2. RELATED WORK
Modeling interdependencies between critical infrastruc-

ture networks is challenging due to a wide range of dimen-
sions such as the type of coupling and type of failures [22, 23].
Previous studies of interdependent network systems focus
mainly on the analysis of robustness [3, 12–14, 20, 21, 26]. A
number of work study the interdependency between com-
munication network and power grid, most of which focus on
finding the vulnerabilities of existing network [21] or the de-
sign of a robust topology [13]. In comparison, we study a
resilient solution that handles the failures in communication
network in the interdependency model.

Reliable broadcast [4] has been widely studied that in-
cludes several categories such as regular reliable broadcast
and uniform broadcast. We study best effort broadcast,
where all the correct nodes deliver the message if the sender
is correct. In terms of failures, previous studies tolerate both
crash failures [18, 24] and Byzantine (arbitrary) failures [4] in
both highly connected network [10, 18] and loosely connected
network [7, 19]. We study crash failures in the communica-
tion network in the model of interdependent networks.

Reliable broadcast of multipath message forwarding has
also been studied in publish/subscribe systems [16, 17]. The



use of soft links has been proposed [17] to handle failures
during message forwarding. Each node maintains several
soft links that can be activated in the presence of failures.
We use similar idea of soft links to handle failures.

Failure detectors were proposed previously to detect faulty
behaviors [5, 8]. Chandra and Toueg [5] introduced the no-
tion of unreliable failures detectors, where each failure de-
tector outputs the identity of processes suspected to have
crashed and nodes can rely on it for message transmission.
We also use failure detectors for c-nodes to detect crashing
c-nodes in their routing tables.

3. INTERDEPENDENCY MODEL
We study the interdependency between two networks: the

power grid network p-network and the communication net-
work c-network. The power grid consists of a set of n p-
nodes p1, p2, · · · , pn (e.g. substations). The communica-
tion network consists of a set of m c-nodes c1, c2, · · · , cm
(e.g., routers, sensors, etc.). The p-nodes are connected with
power lines and the c-nodes are connected with communica-
tion links. Each c-node constantly receives power from the
p-nodes and every p-node constantly receives control signals
from the c-nodes. We follow a model similar to the one used
in previous work [9, 13, 21], where a p-node operates if it re-
ceives control signals from at least one c-node and a c-node
operates if it receives power from at least one p-node. We
assume c-nodes do not have backup battery, i.e., a c-node
immediately fails if it does not receive power from any p-
nodes. In addition, we assume that power substations are
connected to power generators, i.e., each power substation
is connected to a generator that is sufficient for receiving
power and we ignore the amount of power supply or de-
mand. In other words, p-nodes can only fail when there are
no incoming control signals.

Notation Meaning

Vc all the c-nodes
Vp all the p-nodes
Ec bidirectional edges between c-nodes
Ep bidirectional edges between p-nodes
Ecp directional edges from c-nodes to p-nodes
Epc directional edges from p-nodes to c-nodes
Ecp&Epc interdependency edges
oin degree number of outgoing interdependency edges
iin degree number of incoming interdependency edges
P (−→ci ) all the p-neighbors of ci
P (←−ci ) all the p-nodes that have interdependency

edges to ci
C(−→pi ) all the c-neighbors of pi
C(←−pi ) all the c-nodes that have interdependency

edges to pi
l1 maximum oin degree of any c-node
l2 maximum oin degree of any p-node
l3 maximum iin degree of any p-node
l4 maximum degree of any c-node

Table 1: Notations.

The interdependency between the networks can be repre-
sented in a graph G = (V,E), as illustrated in Figure 1. We
use several notations to represent the network, as shown in
Table 1, and we use edges and links interchangeably. V =

Vc∪Vp is the set of all the nodes and E = Ec∪Ep∪Ecp∪Epc

is the set of all the edges. The network is composed of both
directional and bidirectional edges to distinguish different
features of both individual network and interdependent net-
works. Outgoing interdependent network degree (abbrevi-
ated as oin degree) and incoming interdependent network
degree (abbreviated as iin degree) represent the degree re-
garding interdependency edges. We also use the term degree
by default to refer to the number of edges of a node in an
individual network. Without loss of generality, we call two
c-nodes neighbors or direct neighbors if there is an edge be-
tween them, i.e, they can communicate with each other. The
Ec edges are also called primary links. If a c-node ci has an
edge to a p-node pi, we call pi a p-neighbor of ci. Simi-
larly, if a p-node pi has an edge to a c-node ci, we call ci a
c-neighbor of pi.

Correct nodes faithfully follow the communication algo-
rithm and send messages according to the network proto-
cols. Meanwhile, the c-nodes are subject to crash failures
but the crashes can be reliably detected by other nodes. We
assume fair-loss links, where if a message is sent infinitely
often by a correct sender to a correct recipient, it is received
infinitely often. Furthermore, links do not produce spurious
messages.

We now introduce several notions and define cascading
failures.

Definition 1. (Path) A sequence of c-nodes (c1, · · · , cn)
is a path if, ∀i ∈ {1, · · · , n− 1}, ci and ci+1 are neighbors.

Definition 2. (Initial Failure) The failure of a c-node ci
is an initial failure if its failure is not caused by the loss of
incoming interdependency edges.

Definition 3. (Consecutive Failures) A sequence of c-
nodes seq = (c1, · · · , cn) is a set of consecutive failures if,
∀i ∈ {1, · · · , n− 1}, ci fails, n ≥ 2, and seq is a path.

Definition 4. (Single Failure) The failure of a node ci
is a single failure if none of its neighbors fails.

Definition 5. (Cascading Failures) A number of nodes
s = (c1, · · · , cn, p1, · · · , pn) are cascading failures if, ∃ci, the
failure of which makes all the nodes in s lose incoming in-
terdependency edges.

In other words, we refer to the cascading failures as the fail-
ures that are caused by the loss of interdependency edges
and the nodes that cause the cascading failures as initial
failures. For instance, in the example in Figure 1, c2 is the
initial failure, c2, c4, and p3 are all single failures, and the
set of c3 and p3 are cascading failures caused by c2. In this
paper, we seek to handle single crashing initial failures in the
c-network, each of which may cause several cascading fail-
ures. For other cases, our algorithm can be further extended
to handle failures.

We assume each c-node has a perfect failure detector, which
provides information about certain c-nodes being crashed or
not and it satisfies the following properties.

Strong Completeness. Eventually, every c-node that crashes
is permanently detected by every correct c-node.

Strong Accuracy. If a c-node c is detected by any c-node,
then c has crashed.



The failure detector can be realized using a timeout mech-
anism. Specifically, in order for a c-node c1 to detect the
correctness of c-node c2, it sends a heartbeat message and
starts a timer. If c1 has not received a reply message before
the timer expires, c2 is suspected to be faulty. Although the
failure detector abstraction relaxes the timing assumption
on nodes and links [4], performance can be guaranteed un-
der partial synchrony [11]: synchrony holds only after some
unknown global stabilization timer, but the bounds on com-
munication and processing delays are themselves unknown
to the nodes.

We consider the best effort reliable broadcast problem in
c-network under the above interdependency model, where
all the correct nodes deliver the messages if the sender is
correct. It satisfies the following properties.

Validity. If a correct c-node broadcasts a message m to
a set of c-nodes DES, then every correct c-node in DES
eventually delivers m.
No Creation. If a c-node delivers a message m with sender
s, then m was previously broadcast by s.

4. BEST EFFORT BROADCAST
In this section, we first introduce the preliminaries. Then

we introduce our best effort broadcast algorithm. Specifi-
cally, in addition to primary links, we also use soft links,
which are the information of inactive links to handle the
failures of primary links. Through the activation of soft
links, new connections are built between correct c-nodes so
that messages can be reliably delivered in the presence of
failures. Notice that if there exists an alternative path to
the destination, re-routing might be an option but it can
also consume extra communication overhead and cascading
failures may occur in the alternative routes.
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Figure 2: Example of p-link tables, c-link tables, and
c-groups.

Our soft link technique is used to guarantee best effort
reliable message transmission through new communication
links so that all the correct destination nodes receive and de-
liver the same message. In order to correctly build soft links,
we employ two sub-algorithms: a cascading failure informa-
tion collection algorithm called f-information collection and
an information update algorithm when failures are present,
called link management. As we will introduce in §4.3, we use
a fully distributed message transmission algorithm to ana-
lyze cascading failures, based on which nodes can maintain
soft links. Lastly, we show link management in §4.4, which
is used to update the tables and link information at nodes
when failures are detected.

4.1 Preliminaries
Routing Tables. As illustrated in Figure 2, each c-node
maintains several routing tables in the interdependent net-
works, the definitions of which are shown in DEFINITION 6
to DEFINITION 8. A p-link table PT of a c-node consists
of all the p-neighbors and the number of their iin degrees.
Similarly, for each p-node, there is a c-link table CT , which
consists of all the c-neighbors and their iin degrees. For each
p-node pi, all the c-nodes that have interdependency edges
to it form a c-group CG.

Definition 6. (P-link table PT) For any c-node ci, PT =
{p1, · · · } where ∀pj ∈ PT , pj ∈ P (−→ci ) and ∀pk ∈ P (−→ci ),
pk ∈ PT .

Definition 7. (C-link table CT) For any p-node pi, CT =
{c1, · · · } where ∀cj ∈ CT , cj ∈ C(−→pi ) and ∀ck ∈ C(−→pi ),
ck ∈ cT .

Definition 8. (C-group CG) For any p-node pi, CG =
{c1, · · · } where ∀cj ∈ CG, cj ∈ C(←−pi ) and ∀ck ∈ C(←−pi ),
ck ∈ CG.

We assume all the c-nodes communicate according to rout-
ing tables and we refer to it as regular routing tables. In other
words, for each c-node ci and a specific destination cj , if ci
wants to send a message to cj , ci looks up its routing table
and verify that cj is reachable, find a neighbor ck, and sends
the message to ck.

In addition to the regular routing tables for message trans-
mission in a regular communication network, each c-node
also maintains a p-link table PT , the c-link tables for all the
p-nodes in PT , denoted by {CT}, and all the c-groups that
it is a member of, denoted by {CG}. For instance, as shown
in Figure 2, c-node c1 has a p-link table with p1 in it, the c-
link table for p1, and one c-group with c1 and c2. Similarly,
c-node c2 has a p-link table with p1 and p3, the c-link tables
for both p1 and p3, and a c-group, which only has c2 in it.
All the tables can be obtained initially through a heuristic
method. We ignore the details in this paper since it is not
the main focus of our work.

It is straightforward to see that the number of entries in
a p-link table is at most l1 and the number of entries in a c-
link table is at most l2, according to the notations in Table 1.
Also, a c-node has at most l1 c-groups and the number of c-
nodes in each c-group is at most l3. Therefore, in addition to
the routing information in a single communication network,
the extra storage space for each c-node is O(l1 + l1l2 + l1l3),
where l1 is the size its p-link table, l1l2 is the size of c-link
tables for the p-nodes, and l1l3 is the size of all the c-groups.
In the worst case, l1 can be as large as n and l2 and l3 can
be as large as m. Therefore, the storage space complexity is
limited by O(mn).

Links. A c-node has two types of links: primary links and
soft links. Primary links of a c-node are the communica-
tion links to the neighbors in the c-network in order to per-
form message transmission. When the primary links fail,
soft links are activated and connections are built with the
corresponding c-nodes and messages are transmitted to the
activated soft links. Each soft link handles one initial c-node
failure where the c-node may cause multiple cascading fail-
ures. For simplicity, in this paper, for each c-node, we build
one soft link to handle one initial failure of one neighbor for



each of its path. If there are consecutive initial failures in
each path, the algorithm can be further extended to handle
the failures.

Failure Detector. As mentioned in §3, each c-node has
a built-in failure detector module that provides information
about whether certain c-nodes have crashed or not. A c-
node uses the failure detector to monitor the correctness of
its neighbors (c-nodes), the c-nodes in its c-link tables, and
all the c-nodes in its c-groups. Notice that the c-nodes in
the c-link tables and c-groups may not be direct neighbors
of a c-node. Therefore, the correctness of those c-nodes re-
lies on the neighbors of those c-nodes. Specifically, if a node
ci wants to learn the correctness of cj , which is not its di-
rect neighbor, it can learn the correctness of cj from the
neighbors of cj . This is because each node must monitor
the correctness of its neighbors. However, ci does not need
to maintain the information of the neighbors of cj . Instead,
it simply sends a [fd, ci, cj ] message to cj . When a neighbor
of cj receives this message, it returns the result to ci. This
applies to all the cases when a c-node needs to monitor a
node that is not its direct neighbor. Also notice that if cj is
not reachable by ci, it cannot detect the failures.

4.2 Best Effort Broadcast Algorithm
Our best effort broadcast algorithm proceeds as follows.

We use a fully distributed f-information collection algorithm
(as we will introduce in details in §4.3) for each c-node ci
to collect the information of cascading failures initialized by
ci. Since the f-information collection algorithm is initialized
by each c-node to analyze all the cascading failures caused
by itself, the analysis result is then sent to all the neighbors.
Based on such information, each c-node ci can learn in each
path whether the failure of its neighbor will cause other fail-
ures in the path. It can then maintain a soft link to the next
correct c-node cj in each path. The soft link contains the
necessary information for ci to build a connection with cj
and the actual connection is made only when the soft link is
activated. Notice that in a single communication network,
for each soft link of node ci, it only maintains the informa-
tion of the neighbor of its neighbor, i.e., the c-node that is
two hops away. However, in interdependent networks, if the
c-node cj that is two hops away from ci will also fail, ci also
needs to learn the identity of ck–the subsequent node of cj ,
and analyzes whether ck will also fail. This process contin-
ues until ci learns the next correct c-node in the path. For
instance, if ci learns from its neighbor cj that if ci and cj
fails, the subsequent node ck of cj will also fail but the sub-
sequent node cl of ck will be correct, ci can then build a soft
link with cl in order to handle the failure of cj . In this case,
ci also needs to learn from ck the identity of cl since ci does
not have the information beforehand. After soft links are
activated, they become the primary links and the primary
links are discarded. New soft links will be maintained after
another round of f-information collection.

In the normal case when there are no failures, c-nodes
use their regular routing tables for message transmission.
If a c-node ci detects the failure of its subsequent node cj
through the failure detector and it has a pending message to
cj , it first diagnoses the situation using the pre-collected f-
information from cj . If the destination node cl will also fail if
cj is faulty, it simply stops broadcasting the message since cl
will also be faulty. Otherwise, ci activates the corresponding
soft link, builds the connection, and sends messages to the

activated soft link.
For long term robustness, it is important for nodes to

monitor the correctness of the c-nodes in the routing tables
to maintain the most up-to-date topology. As we will de-
scribe in details in §4.4, link management is used to update
the tables. The soft links will be updated through another
round of f-information collection.

Note that in a mesh topology, it is possible that there
are alternative paths to the destination, which we can use
to guarantee message delivery. However, it is also possible
that failures cascade to the alternative paths. Therefore,
the use of soft links is very effective in guaranteeing that all
the correct nodes deliver the message as a bottom line. Also
note that if some nodes are not initially reachable, the use of
soft links is not effective to guarantee best effort broadcast.

[] 1 initialization:
2 {CT ′}, PT ′ ← {CT}, PT
3 X.add(ci) {output: a set of nodes that will fail}
4 watchlist()
5 for px in PT ′

6 px.(iin degree)← px.(iin degree)− 1
7 if px.(iin degree) = 0 then
8 for ck in {CT ′}.px
9 ck.(iin degree)← ck.(iin degree)− 1
10 if ck.(iin degree) = 0 then
11 watchlist.add(ck)
12 if !watchlist().empty()
13 send [fcollect, ci, X, {CT ′}, PT ′] to watchlist().first
14 on receiving [fcollect, cini, X, {CT ′}, PT ′] from cj
15 {CT ′′} ← merge({CT ′}, {CT})
16 PT ′′ ← merge(PT ′, PT )
17 X.add(ci)
18 con← False
19 prev(cini) = cj
20 for px in PT ′′

21 px.(iin degree)← px.(iin degree)− 1
22 if px.(iin degree) = 0 then
23 for ck in {CT ′′}.px
24 ck.(iin degree)← ck.(iin degree)− 1
25 if ck.(iin degree) = 0 then
26 watchlist.add(ck)
27 con← True
28 if !watchlist().empty() then
29 send [fcollect,cini,X,{CT ′′},PT ′′] to watchlist().first
30 if con = False then
31 send [freturn, cini, X, {CT ′′}, PT ′′] to prev(cini)
32 on receiving [freturn, cini, X

′, {CT ′′}, PT ′′] from cj
33 if cj = watchlist().first then
34 watchlist().remove(cj)
35 X ← merge(X,X ′)
36 if watchlist().empty() then
37 send [freturn,ci,X,{CT ′′},PT ′′] to prev(cini)
38 else
39 send [fcollect,ci,X,{CT ′′},PT ′′] to watchlist().first

Figure 3: F-information collection algorithm, where
{CT}.px denotes the c-link table for px in set {CT}.

4.3 F-information Collection
F-information collection is for a c-node cini to collect the

information of the cascading failures by analyzing its fail-



ure. In this case, cini is called the initial failure. This
f-information collection algorithm is a distributed message
transmission algorithm, as shown in Figure 3. There are two
types of messages, fcollect from cini to the nodes that will
fail if cini fails, and freturn back to cini when no further
cascading failures will occur.

The algorithm proceeds as follows. For each initial node
cini, the output is a set of cascading failures X. In the
beginning, ci (the initial failure) first copies its c-link tables
and p-link table, as shown in line (ln) 2, and adds itself to
X. Next, It looks up its p-link table and updates the entries
by decreasing the iin degree by 1, as shown in ln 5-6. If
any p-node px has an incoming interdependency degree of
0, indicating that if ci fails then px will also fail, ci starts to
lookup the c-link table of px, as shown in ln 7-8. Similarly,
it also updates the c-link table by decreasing the iin degree
by 1, as shown in ln 9. If any c-node ck in the c-link table
of px has iin degree of 0, ck will also fail if ci fails and ck is
added to the watchlist(). A message with ci as the initial
node that initializes the f-information collection, X, {CT ′},
and PT ′ is sent to the nodes in watchlist() sequentially, i.e.,
the message is sent to one node in the watchlist() at a time,
as shown in ln 12-13. Note that the p-link table and c-link
tables are updated on the copies of the original tables and
the goal is to mimic the effect of node failures.

When a node ci receives such a message with X, {CT ′},
and PT ′, it first adds itself to the set X and copies its c-link
tables and p-link table. It also merges {CT ′} and PT ′ to
its tables and updates the common entries, as shown in ln
15-16. The purpose of this step is to let nodes analyze the
cascading effect, taking into consideration previous failures.
For instance, if c1 and c2 both have an edge to p1 and c1
wants to analyze the cascading failures when it fails, it will
not include p1 in the cascading failures since p1 still has an
incoming edge when c1 fails. However, if in the following c2
fails from the failure of another p-node (but also caused by
the initial failure of c1), it must include p1 into the cascading
failures since now p2 has no incoming edges. Therefore, each
node must include its copies of c-link tables and p-link tables
and each c-node must merge the tables from previous nodes
so as to analyze all the failures. The nodes run the same
algorithm to analyze the next c-node failures, as shown in
ln 20-29. When a c-node will not cause any further cascading
failures of c-nodes, it sends a freturn message with X to the
previous node, as shown in ln 30-31. This process continues
until the message reaches the initial node. When the initial
node learns the set of cascading failures when it fails, it sends
the f-information to all its neighbors.

In the f-information collection algorithm, each c-node only
keeps partial information about the cascading failures, i.e.,
it receives the fcollect from a c-node, computes the subse-
quent failures, and sends to the corresponding c-nodes that
will fail subsequently and waits for freturn messages. We
use a watchlist() scheme for the nodes to collect the infor-
mation during such a process. This can be represented as a
logical Depth First Search (DFS) tree, as shown in Figure 4,
where the arrows between nodes represent the message flow
and the links between parent and its child nodes may not
be real communication links. Instead, the logical tree just
demonstrates the sequence of message transmission during
f-information collection. The root of the tree is the initial
node cini that starts the f-information collection process,
which is included in both fcollect and freturn messages.

When a node ci receives a fcollect message, it keeps the
previous node who sent the fcollect message (the parent in
the tree, which may or may not be the initial node), as shown
in ln 19) and watches all the c-nodes that will fail after it
fails, i.e., the child nodes in the tree. It sends the fcollect
to one node in its watchlist() at a time and waits for the
freturn messages. When ci receives a freturn message, it
removes the node from watchlist() , as shown in ln 34, and
merges X ′ to X, as shown in ln 35. If there are still nodes in
its watchlist(), ci continues to send fcollect message until it
receives freturn from all of them. When there is no node in
watchlist(), it sends a freturn message to its previous node
prev(cini). This mechanism is necessary for each node to
collect all the cascading failures since each node only carries
partial information.

An Example. As shown in Figure 4, c1 initializes the f-
information collection, where X = {c1} and watchlist() =
{c2, c5, c8}. It first sends a fcollect to c2 and c2 further
sends a fcollect message with X = {c1, c2} to c3 and it has
watchlist() = {c3, c4}. When c2 receives freturn message
from c3 with X = {c1, c2, c3}, it adds c3 to its X. Now
c2 has watchlist() = {c4} and it sends a fcollect to c4.
When c2 receives X = {c1, c2, c3, c4} from c4, it adds c4
to its X and the watchlist() becomes empty. It can then
send a freturn message to c1 and c1 has watchlist() =
{c5, c8}. Similarly for other branches, each message only
contains partial information and each node needs to watch
its child nodes one by one until it learns results from all
of them. Eventually, c1 learns all the results and the f-
information collection is completed.

c1

c2

c4

c5

c3

c8

c6

c7
fcollect

freturn

Figure 4: Example of f-information collection.

The Watchlist. Notice that we use a sequential mode for
nodes to send and collect f-information, i.e., each node sends
fcollect to one node in its watchlist() at a time. This is
because each message only contains partial information until
the information reaches the last node in the tree (c8 in the
example). Due to the use of the sequential mode, we avoid
the case where some failures are not included if the messages
are transmitted in parallel to the nodes in the watchlist().
For instance, c4 and c6 both have an edge to a p-node p9. If
the fcollect messages are sent concurrently to all the child
nodes from c1, none of c4 and c6 will consider the failure of
p9 and therefore some failures may be ignored during this
process. In addition, the sequence of sending messages to
nodes in the watchlish() does not affect the result since
eventually all the nodes that will fail will be visited.

Additionally, it is possible that some node in the watchlist()
is not reachable. In this case, the c-node just skips the node
and sends the message to next node in the watchlist(). The



reason is that we analyze the failures prior to their presence.
For instance, if a node c1 is not reachable at some node c2
during the f-information collection process, node c1 must not
be reachable for the initial node c3 due to the fact that c2 is
reachable for c3. Therefore, if some nodes are not reachable
prior to the failures, the use of soft links is not effective and
it is out of scope of this paper.

4.4 Link Management
In order for c-nodes to maintain the routing tables that

represent the most up-to-date topology, each c-node ci moni-
tors the correctness of c-nodes in addition to its direct neigh-
bors. These c-nodes include the c-nodes in the c-link tables
and c-nodes in all the c-groups of ci. The algorithm is shown
in Figure 5, where {CG}.cj denotes all the c-groups that cj
is a member of, cg.p is the p-neighbor of the c-nodes in
c-group cg, PT (p) is the entry for p-node p in the p-link
table, and |cg| is the number of nodes in c-group cg. The
goal of monitoring the c-nodes in the c-groups is to update
the p-link tables since the incoming interdependency degree
of the p-nodes must be updated. The goal of monitoring the
c-neighbors of the p-neighbors of ci is to update the c-link
tables.

1 on event cj is faulty
2 if cj in {CT} then
3 for ct in {CT}.cj
4 ct.remove(cj)
5 if cj in {CG} then
6 for cg in {CG}.cj
7 if ci = cg.leader then
8 send [cgupdate, cj ] to cg
9 else
10 send [le, cj , ck] to cg
11 PT (cg.p).(iin degree)←PT.(cg.p).(iin degree)−1
12 if |cg| = 1 then
13 send [sf, ci, cg.p] to {CT}.(cg.p)
14 if cj , p in F then
15 CT (p).(iin degree)←CT (p).(iin degree)−1
16 on receiving [cgupdate, cj ]
17 pl ← {CG}.cj .p
18 PT (pl).(iin degree)← PT (pl).(iin degree)− 1
19 on receiving [sf, cj , p]
20 F.add(cj , p)

Figure 5: Link management algorithm.

The key idea for the failure detection is that if a c-node
fails, we must remove the interdependency edges and update
the tables at all the applicable c-nodes. When the outgoing
interdependency edges of a c-node are removed, the corre-
sponding number in the p-link table must be updated, i.e.,
the iin degree of the p-node in all the applicable p-link ta-
bles must be decreased by one. Therefore, we introduce the
idea of c-groups and we now introduce the maintenance of
c-groups using a leader-based scheme.

In each c-group, a leader is elected and agreed by all the
c-nodes. Initially, there is a default leader in each group.
The leader monitors the correctness of all the c-nodes in the
same group. When it detects the failure of some c-node cj , it
updates its p-link table and notifies other c-nodes, as shown
in ln 7-8. Other c-nodes then simply update their p-link
tables, as shown in ln 16-17. If a c-node ci is not the leader

in a c-group, it monitors the correctness of the leader. If
the leader fails, ci notifies all the nodes in the c-group with
the id of the new leader ck, as shown in ln 9-10. The leader
is elected according to the ids in a deterministic rotating
manner. When a node receives or has sent a [le] message,
it stores the information of the new leader. If the node is
the new leader, it sends a message to all the nodes in the
c-group and starts monitoring the correctness of them. In
addition, all the nodes also update their p-link tables since
the previous leader has failed.

On the other hand, when ci fails, we must remove the
incoming edges. Therefore, it is straightforward for a c-node
cj to monitor the c-nodes in its c-link tables since the c-link
tables it maintains are the c-link tables of the p-nodes in its
p-link table. In this case, if a c-node ci in the c-link table(s)
fails, cj simply removes the corresponding entry, as shown
in ln 4 in Figure 5.

If the failure of the ci will cause the failures of some p-
nodes but the failure will not cascade to the c-network again,
we should also update the c-link tables for all the applicable
c-nodes. For this purpose, we add another message type
called [sf ] where if node ci becomes the only node in a c-
group cg, it sends a [sf ] message to the nodes in the c-link
table of node cg.p (the p-neighbor of c-nodes in cg), as shown
in ln 12-13. When a node ci receive a [sf ] message from some
node cj , it starts monitoring the correctness of cj and also
adds cj to a set F , as shown in ln 19-20. If it detects the
failure of a node in F , it decreases the degree of cj in the
c-link table, as shown in ln 14-15.

Assume that a c-node can be the leader of at most t c-
groups, the number of c-nodes a c-node ci needs to monitor
is limited by O(l4 + l1l2 + tl3), where l4 is the maximum
number of neighbors ci needs to monitor, l1l2 is the maxi-
mum number of c-nodes in the c-link tables of ci, and tl3 is
the maximum number of c-nodes ci needs to monitor in its
c-groups. Since l1 and t can be as large as n and l2 to l4 can
be as large as m. The number of c-nodes a node needs to
monitor is limited by O(mn).

4.5 Correctness
We show the correctness of our best effort broadcast algo-

rithm in the following theorem and we briefly show the proof.
In the theorem, new failures refer to the failures of nodes in-
volved in the f-information collection and link management
process. Our approach guarantees correctness if no failures
occur in the f-information. The idea is straightforward. F-
information collection is used to analyze the cascading fail-
ures. Failures during the algorithm will cause inaccurate
results and soft links may not be correctly maintained.

Theorem 1. Let there be no consecutive initial failures in
each path. Best effort reliable broadcast is achieved if there
are no new failures among the nodes that participate in each
f-information collection and link management process.

Proof. The no creation property is straightforward. Since
we assume nodes can only fail by crashing, each message, if
received by some c-node, must be generated by the sender,
i.e., no creation property is true.

We now show the validity property in two steps. We first
show that if soft links are correctly maintained and there
are no consecutive failures, messages are delivered to all the
correct receivers. Then we show that if there are no new fail-
ures during f-information collection and link management,



soft links can be correctly maintained. Based on these, the
validity property can be proved.

We assume that there are no consecutive initial failures.
Therefore, one soft link for each node, if correctly main-
tained, is sufficient to guarantee that messages are reliably
delivered to the next correct c-node. For each path, by
induction, messages can always be sent along the path to
the destination. The destination, if correct, will deliver the
message according to the algorithm. Since cs is correct, it
sends the message to the paths to all the correct destina-
tions. Therefore, the statement is true.

Then we show that if there are no new failures during
f-information collection, soft links can be correctly main-
tained. First, during link management, since we use perfect
failure detectors, faulty c-nodes will eventually be detected
by correct c-nodes. As discussed in §4.4, we update the p-
link tables through the use of c-groups and we update the
c-link tables by monitoring of c-nodes in the c-link tables
and the use of [sf ] messages. If there are no failures dur-
ing message transmission, all the routing tables will even-
tually be correctly maintained by all the c-nodes to reflect
the most up-to-date topology. Second, since the routing
tables are correctly maintained, during f-information collec-
tion algorithm, each node is able to analyze the failures. The
f-information collection algorithm eventually visits all the c-
nodes, if they are connected before the failures, that will fail
initialized by each c-node. Therefore, if there are no new
failures among all the nodes involved in each f-information
collection process, f-information collection enables each c-
node to analyze the cascading failures. The correctness of
the theorem then follows.

4.6 Discussion
The correctness of soft links is guaranteed if there are no

new failures during f-information collection and link man-
agement. In large-scale and highly dependent and dynamic
networks, it may not be the case. In this case, nodes may
maintain out-of-date c-link and c-group tables and cause
wrong analysis results. It is also possible that the f-information
algorithm halts where a node waits for a freturn message
but some nodes during message transmission fail. As we
will discuss further in §5, this does not guarantee best effort
broadcast where some messages are not delivered to all the
correct destinations. We can handle this problem by also
using alternative routes for message delivery to increase the
delivery rate and adding timers during f-information to en-
sure that the algorithm will end in the presence of failures.

As discussed previously, the storage complexity for each
node is O(l1 + l1l2 + l1l3) and the complexity for the number
of nodes each failure detector module is O(l4 + l1l2 + tl3). In
the worst case, both are limited by O(mn). It is not hard to
conclude that in the worst case of a highly connected mesh
topology or highly dependent networks, a c-node might even-
tually need to maintain the information of all the networks
and monitor the correctness of all the c-nodes. However, in
this case, it is less possible that a failure of a c-node will
cause multiple cascading failures.

5. EVALUATION
We implement and evaluate our algorithm using OMNeT++

network simulation framework [25]. We construct various
sizes of graphs and compare the performance of our dis-
tributed algorithm (abbreviated as DA) with the Baseline

the Soft Link (abbreviated as SF), both in a single com-
munication network. Baseline is a regular routing algorithm
where nodes use routing tables for message transmission and
do not use soft links. SL builds soft links between nodes that
are two hops away. We limit the number of sink nodes to
fewer than three and each node generates a packet by dou-
bling the previous period (i.e., 0.01ms, 0.02ms, 0.04ms, etc.).
The average delay between two neighbors is set to 0.01ms.
When failure detectors are used, each node sends a heart-
beat message every 0.3ms and the timer is set to 0.1ms. We
set up the maximum outgoing interdependency edges of each
node to evaluate the interdependent networks with different
dependency level. After the interdependent networks are
generated, we check the validity of them by ensuring every
node has at least one incoming interdependency edge.

We first assess the network traffic according to message
types to evaluate the overhead of our algorithm. We observe
that the regular network traffic in SL and our proposed al-
gorithm are in general lower than the Baseline. However,
the failure detection and f-information do not decrease the
regular traffic to a large degree. We then evaluate the ro-
bustness of the algorithm by measuring the percentage of
packet drop and the average delay of failure detection. We
have proved that best effort broadcast can be guaranteed
if there are no new failures during f-information collection
and link management. However, as discussed in §4.6, in
a large-scale and dynamic network where failures are fre-
quent, new failures can occur and best effort broadcast may
not be guaranteed. Therefore, we also evaluate the packet
drop rate to assess the efficiency of our algorithm. We no-
tice that our proposed algorithm has largely reduced the
packet drop rate and there is a tradeoff of a longer failure
detection delay. Lastly, we evaluate the f-information col-
lection delay using various sizes of topologies. We find that
due to the way we model the networks, the performance is
more related to the number of interdependency edges rather
than the degree in c-network. Instead, the average degree
of c-network determines how many alternative paths exist
for message re-routing. We observe that there is no generic
relationship between the number of nodes and the average
latency for f-information collection. This indicates that f-
information collection process does not increase the overall
complexity in a scalable network.

5.1 Failure Handling Overhead
We assess the network traffic of different message types

and compare our algorithm with Baseline and SL. This is
used to assess the overhead caused by our algorithm for dis-
tributed failure analysis. In this experiment, we use 200
c-nodes and 200 p-nodes with maximum oin degree of 2. In
the c-network, we generate a random mesh graph where the
average degree of each node is 3. Each node has 0.1 prob-
ability of being crashed. As observed in Figure 6(a), the
Baseline algorithm only has regular traffic. Comparably,
since SL uses failure detector for each node to monitor the
correctness of its neighbors, the regular traffic is in general
lower than Baseline. However, the failure detection traffic
is relatively stable. This is because each node usually has a
fixed number (unless failures occur) of neighbors to monitor.

Compared to Baseline and SL, our proposed DA algorithm
generates higher volume of traffic since each node needs to
monitor the correctness of a larger number of nodes. Notice
that as discussed in §4.6, the c-nodes that a failure detector
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Figure 6: Evaluation of the algorithms.

needs to monitor may not be the direct neighbors, where the
correctness of the c-nodes is monitored by their neighbors.
We count these notification messages also as failure detec-
tion traffic. As shown in Figure 6(b), the regular traffic is
lower than both Baseline and SL and the failure detection
traffic is higher than that of SL. The f-information collection
traffic is very high in the beginning. This is because all the
nodes need to run f-information collection in the beginning
of the experiment. After the initialization, f-information col-
lection is run only when failures occur.

#Nodes Algorithm %Packet Drop Avg FD Delay

Baseline 52.19% N.A.

50 SL 28.45% 0.19ms

DA 3.03% 0.55ms

Baseline 51.80% N.A.

300 SL 32.25% 0.21ms

DA 13.03% 7.14ms

Table 2: Packet drop rate and average failure detec-
tion delay of the algorithms

5.2 Robustness
In order to evaluate the performance of the algorithms un-

der failures, we employ a chain-based topology for c-network
with 50 nodes where the nodes are organized sequentially
and each node is connected to at most two other nodes.
There are 50 p-nodes and the maximum oin degree is set to
2 for both c-nodes and p-nodes. We set up the sink nodes to
be the middle of the chain and only nodes in the first half of
the chain may fail. As shown in Table 2, since the Baseline
does not have a scheme to handle failures, the packet drop
rate is high. This can be explained by the fact that each
node becomes critical in message transmission. SL has a
much lower packet drop rate because it maintains soft links
between nodes that are two hops away, which are still ef-
fective when the cascading failures do not include too many
consecutive failures. Our proposed DA algorithm achieves
the lowest packet drop rate since it handles cascading fail-
ures. The tradeoff is a slightly longer failure detection delay.
Since each node needs to monitor the correctness of a larger
number of nodes, the failure detection generates much longer
delay due to the communication overhead.
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Figure 7: Average delay for f-information collection.

We also evaluate the packet drop rate and the average
failure detection delay with 300 c-nodes and 300 p-nodes.
According to Table 2, the packet drop rate for Baseline is
similar with previous case and the packet drop rate for SL
slightly increases. This is because in SL each node simply
monitors the correctness of it neighbors. Although our pro-
posed DA algorithm still achieves the lowest packet drop
rate, the packet drop rate is larger than the case with fewer
nodes. Also, since the topology has a larger number of
nodes, the failure detection delay is also larger, especially
with the nature of chain-based topology where there might
be a large number of hops between any two nodes. There-
fore, it is not hard to conclude that in highly interdepen-
dent and large-scale networks, the failure detection delay
and packet drop rate can further be increased.

5.3 F-information Collection Delay
In order to evaluate the performance of the algorithm, we

assess the average delay of f-information collection process
using topologies of various network sizes with 5 to 500 c-
nodes and p-nodes. We generate random mesh topologies
where the average degree of c-nodes is 3. A benchmark x-
y represents a graph with x c-nodes, x p-nodes, and the
maximum oin degree is y. Based on our observation, when
the oin degree is bigger than 4, it is less possible that a
failure of a c-node causes multiple failures, i.e., soft links
between nodes that are two hops away are sufficient. Also,
it is straightforward that if each node only has one outgoing



interdependency edge, the networks become highly interde-
pendent, where a single failure causes the failures of almost
the whole network. We also show the depth of the tree and
the average number of actual hops during each f-information
collection in Figure 6(c), which might not be the same with
the number of nodes in the tree since the parent node and
a child node may not be direct neighbors. We notice that
there is not a generic relationship between the number of
nodes and the number of hops due to the way we link the
nodes. We also notice that the average depth of the tree is
2 to 3. This indicates that an initial failure of a c-node will
only cause failures of some c-nodes and the failures will not
cascade furthermore. Additionally, as shown in Figure 7, we
also evaluate the average latency for f-information collection.
Each f-information collection runs for 0.05 to 0.34ms, where
the average latency is directly related to the number of ac-
tual hops due to the fact that our algorithm essentially visits
all the nodes that will fail. This can be explained by the fact
that the f-information collection visits the nodes in a DFS
manner so that the delay is directly related to the number
of nodes that will fail and the distance between them.

6. CONCLUSION
In this paper, we study best effort broadcast in the in-

terdependent networks between a multihop communication
network and a power grid network. We handle crash fail-
ures through the use of soft links in the communication net-
work. In order to efficiently build soft links to handle cascad-
ing failures, we present a fully distributed algorithm for the
nodes to analyze the failures. Each node needs to maintain
minimum extra information, which is updated from time to
time to reflect the up-to-date network topology. Based on
our evaluation results, our algorithm is effective in handling
cascading failures with little overhead.
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[26] J. Winkler, L. Dueňas-Osorio, R. Stein, and
D. Subramanian. Interface network models for
complex urban infrastructure systems. Journal of
Infrastructure Systems, 17(4):138–150, 2011.


