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Abstract—As the first Byzantine fault-tolerant (BFT) protocol
with linear communication complexity, HotStuff (PODC 2019)
has received significant attention. HotStuff has three round-trips
for both normal case operations and view change protocols.
Follow-up studies attempt to reduce the number of phases for
HotStuff. These protocols, however, all give up of one thing in
return for another.

This paper presents Marlin, a BFT protocol with linearity,
having two phases for normal case operations and two or three
phases for view changes. Marlin uses the same cryptographic
tools as in HotStuff and introduces no additional assumptions.
We implement a new and efficient Golang library for Marlin
and HotStuff, showing Marlin outperforms HotStuff for both
the common case and the view change.

I. INTRODUCTION

Byzantine fault-tolerant state machine replication (BFT) is
a fundamental tool in fault-tolerant distributed computing [16,
20,21,23,25,45]. BFT has nowadays gained growing attention,
as it is the de facto model for permissioned blockchains [8,
11, 18, 43, 46, 51].

Being the first BFT protocol with linear communica-
tion complexity, HotStuff [52] has been used by the Diem
blockchain platform. The technique underlying HotStuff has
also proven significant, yielding novel protocols such as [3]–
[5, 48].

Strikingly, HotStuff is best known as a BFT with linear
authenticator complexity if instantiated using threshold sig-
natures [12, 44], but its most efficient implementation is to
instantiate threshold signature using a group (linear number)
of standard signatures: multiple platforms and systems [2, 31,
40] have reported HotStuff with conventional signatures out-
performs HotStuff with the most efficient threshold signature
(or multi-signature), unless one tests a scenario that 1) has a
significant network latency, where the cryptographic overhead
is less visible, and 2) has a low network bandwidth and a
large n (the number of replicas), where n signatures are no
longer bandwidth negligible compared to operations [40]. The
fact should not be surprising, as the most efficient dedicated
threshold signatures use expensive cryptographic pairings.
Computing pairings is at least an order or several orders of
magnitude slower than signatures [10].

HotStuff commits operations in three round-trips (phases),
but the optimal latency (for HotStuff-style protocols) is two
phases. Naturally, there has been a line of works aiming at
reducing the number of rounds for HotStuff, such as Fast-
HotStuff [34], AAR [6], Jolteon/Ditto [30], and Wendy [31].

*Corresponding authors.

Brief review of two-phase BFT protocols. Fast-HotStuff [34]
and Jolteon [30] have a two-phase normal case operation but
have a quadratic communication overhead in the view change
protocol. Diem Team is currently integrating Jolteon into the
next release of DiemBFT [30] for its performance in normal
case operations, which further motivates the study of two-
phase BFT protocols with linearity.

Abspeol, Attema, and Rambaud (AAR) [6] propose a theo-
retical work that reduces the number of phases of HotStuff to
two. AAR has a quasilinear communication cost (O(n log n)).
The protocol, however, cannot be efficiently implemented, as
it uses prohibitively expensive zero-knowledge proof systems.

A concurrent and beautiful system, Wendy [31], uses a
novel aggregate signature scheme to build a new HotStuff-
style protocol that has a two-phase normal case protocol and
has at most three phases in the view change. The technique
used is very interesting in the sense it leverages pairing-based
cryptography to prove an operation did not commit. Wendy,
however, has the following features: 1) Wendy introduces an
additional assumption: the view number difference c between
any replica and the leader is bounded and must be fixed in the
system setup phase. The difference c (bounded by the view
number bound u) is proportional to the size of the public
keys and the cryptographic overhead. To be safe, c should
be reasonably large. 2) Strictly speaking, Wendy does not
achieve linear communication or linear authenticator complex-
ity. During view change, the communication complexity can
be O(n2 log u+ nλ), where u is the view number bound and
λ is a security parameter, while the authenticator complex-
ity is O(n2) (see definitions in Section III for complexity
measures of aggregate signatures and multi-signatures and
see Section IV for an illustration). Note that the number of
pairings needed is O(n) in a view change, but other public-
key cryptographic operations (group multiplications) remains
O(n2 log c). 3) As reported by Wendy [31, Section VII.D], due
to the usage of pairings, Wendy may have lower performance
than HotStuff in view change. Wendy, however, has a very
nice feature that when there are no attacks, the unhappy cases
in view changes may be really rare.

Hence, all these HotStuff descendants make trade-offs: a
more expensive or sometimes more expensive view change for
a two-phase normal case. It remains an open question whether
we can design a better HotStuff-style BFT protocol without
making a trade-off. (In fact, it is also an open problem whether
one could design BFT with a two-phase commit in normal
cases and a linear communication in view changes.)
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Our contributions. We make the following contributions:
• We provide a new HotStuff-style BFT protocol—Marlin.

Marlin achieves strictly linear communication complexity
and authenticator complexity, having two phases in normal-
case operations and two or three phases in view changes.
In the "happy" path, Marlin has two phases for a view
change. Besides, Marlin is well compatible with the chaining
(pipelining) technique. In contrast, all other HotStuff variants
all give up one thing for another and, strictly speaking, none
of them have linear communication or linear authenticator.

• We introduce the notion of view change snapshot to explain
and analyze HotStuff and its variants. The notion unifies the
theory of existing approaches and facilitates designing new
protocols.

• We develop new techniques to build HotStuff-style BFT, in-
cluding a new way of unlocking a locked block, introducing
virtual blocks for early commits, and using shadow blocks
to reduce bandwidth.

• We provide a new Golang library for Marlin and HotStuff.
We have performed extensive evaluations using commodity
servers. We show that, unlike all other HotStuff variants that
are slower than HotStuff in many cases, Marlin outperforms
HotStuff consistently.

II. RELATED WORK

Characterizing BFT protocols. BFT protocols can be roughly
divided into two categories according to timing assumptions:
asynchronous BFT and partially synchronous BFT. Asyn-
chronous BFT protocols rely on no timing assumptions. Safety
of partially synchronous BFT is always preserved, but liveness
relies on the partial synchrony assumption [27]. A large
number of partially synchronous BFT (e.g., [7,16,22,24,25,32,
33, 45, 47, 49, 50]) and asynchronous BFT protocols (e.g., [9,
14, 15, 19, 26, 36, 38, 39]) have been proposed.
No one-size-fits-all BFT. While the paper (and other re-
cent papers mentioned) advocate HotStuff-like BFT protocols,
readers should be aware that there is no one-size-fits-all BFT
protocol, even if we only consider the partial synchrony model.
First, HotStuff has an end-to-end (client-to-client) latency of
9, while PBFT has a latency of 5. The two-phase variants of
HotStuff, including Marlin, have a latency of 7. Second, as we
have commented, there is a mismatch between authenticator
complexity and practical implementations: the most efficient
instantiation for HotStuff (for most cases) uses signatures and
has O(n2) authenticator complexity. Third, it is unclear which
of the two following is more robust: the linear communication
that HotStuff uses, or the classic, broadcast-based communica-
tion that PBFT and other protocols adopt. For instance, some
performance attacks seem to be HotStuff exclusive [29, 41].
The HotStuff techniques. Cachin, Kursawe, Petzold, and
Shoup (CKPS) [14] uses threshold signature to build
communication-efficient consistent broadcast, a primitive that
is proposed by Reiter [42]. CKPS consistent broadcast includes
1) a dissemination phase that broadcasts some message and 2)
an aggregation phase that collects proofs that the message has
been received in the form of partial threshold signatures and

then combines them to generate a threshold signature (a proof
that is publicly verifiable). The HotStuff technique may be
viewed as one using two or more CKPS consistent broadcast
communication phases. The proof in the second phase can be
used to prove succinctly a non-equivocating value has been
accepted in the first phase. Further, the HotStuff technique
may also be referred to as the "lock-commit-unlock" paradigm:
replicas may become "locked" on a value when the value
may have been committed by some other replica and can later
unlock when the value did not commit. HotStuff techniques
have been proven fruitful [3]–[5, 48].
Kauri. Kauri [40] is a new BFT communication abstraction
that uses pipelining and tree-based dissemination and aggre-
gation to achieve scalability. Kauri instantiates the framework
using HotStuff. It makes sense to use two-phase BFT protocols
in the Kauri framework for better performance.
Formal verification. Jehl [35] recently provides a formal
verification for HotStuff using TLA [17] and Ivy [37].

III. SYSTEM MODEL

BFT. We consider a Byzantine fault-tolerant state machine
replication (BFT) system consisting of n replicas, where f
of them may fail arbitrarily (Byzantine failures). We require
n ≥ 3f + 1. In BFT, a replica delivers or commits client
operations submitted by clients. A replica then sends a reply
to the corresponding client. The client computes a final re-
sponse based on the reply messages. We consider the partially
synchronous model [28], where there exists an unknown global
stabilization time (GST) such that after GST, messages sent
between two correct replicas arrive within a fixed delay.
Cryptographic primitives. We use the definition of [12,
44] for a (t, n) threshold signature scheme consisting of
the following algorithms (tgen, tsign, tcombine, tverfiy). tgen
outputs a system public key known to anyone and a vector
of n private keys. A partial signature signing algorithm tsign
takes as input a message m and a private key ski and outputs a
partial signature σi. A combining algorithm tcombine takes as
input pk, a message m, and a set of t valid partial signatures,
and outputs a signature σ. A signature verification algorithm
tverify takes as input pk, a message m, and a signature σ,
and outputs a bit. We require the conventional robustness
and unforgeability properties for threshold signatures. We
may leave the verification of partial signatures and threshold
signatures implicit when describing these algorithms. In this
paper, we set t to n− f .

Efficient instantiations for threshold signatures can be based
on pairings [12, 13]. As we discussed in the introduction, one
can use a group of n signatures to build a (t, n) threshold
signature for better efficiency for real case deployments. Fol-
lowing prior works, this paper assumes pairings for threshold
signatures when considering complexity measures.

We use a collision-resistant hash function h mapping a
message of arbitrary length to a fixed-length output. We
assume the length of all the above primitives (signatures and
hashes) is O(λ), where λ is the security parameter.
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Some BFT protocols mentioned in the paper (e.g., Fast-
HotStuff, Wendy) use aggregate signature [12, 13] which
allows anyone to aggregate signatures for different messages
into a single aggregate signature. An aggregate signature
for t messages and t public keys may be of the form
(m1,m2, · · · ,mt, σ, pk1, pk2, · · · , pkn). Verifying an aggre-
gate signature takes as input all t messages and t public keys.
Complexity metrics. This paper considers communication
complexity, authenticator complexity, and cryptographic oper-
ations needed. Communication complexity means the total bits
transmitted for all replicas. Authenticator complexity means
the total number of authenticators received by all replicas. An
authenticator in our constructions may be a signature, a partial
signature, or a threshold signature.

Note for systems using aggregate signatures, one cannot
claim that a single aggregate signature for t different messages
of size L and t public keys is a single authenticator: the
communication of transmitting such an aggregate signature is
at least tL + λ + n (if using a n-size bit-vector to represent
public keys), and the number of cryptographic operations
needed is at least O(t) (for one has to take as input t public
keys). Hence, we view an aggregate signature for t different
messages as t authenticators. Note an aggregate signature
for the same message, also called multi-signatures, may be
characterized as a single authenticator.

Crucially, pairing operations are much more expensive than
conventional public-key cryptographic operations (e.g., elliptic
curve); thus, it is important to distinguish pairing operations
from conventional (non-pairing) operations.

In general, communication complexity and the number of
cryptographic operations are more precise measures than au-
thenticator complexity alone. We consider all three measures.

A. BFT consensus over graph of blocks

We extend the syntax of BFT replication over graphs mod-
eled in HotStuff [52] for our purpose. The protocols considered
in the paper are leader-based, proceeding in a succession of
views numbered by monotonically increasing view numbers,
and associating each view with a leader. The unique leader in
each view v is denoted as Lv . The most current view number
maintained by a replica is denoted as cview. In each view,
replicas reach consensus on a sequence of blocks until a view
change occurs. During the view change, a new leader is elected
and meanwhile a new view starts.

Each replica stores a tree of blocks (nodes). A block b
contains a parent link pl, a batch of operations op’s, and their
metadata. A parent link for b is a hash digest of its parent
block. A branch led by a given block b is the path from b all
the way to the root of the tree (called the genesis block). We
define view for b as the view during which b is proposed. We
define height for b as the number of blocks on the branch led
by b. The metadata for a block b include the view for b, the
view for its parent block, and the height for b.

Note that one difference between our syntax and the syntax
of HotStuff is that the block in our model includes the view
number of its parent block. Also, in our syntax, multiple blocks

Fig. 1: Tree of blocks.

with increasing heights, instead of a single block, can be
delivered in the same view ("normal case operation").

For a BFT protocol, a monotonically growing branch be-
comes committed. Each time, a block extends the branch led
by its parent block. We say a block b′ is an extension of a
block b if b is on the branch led by b′. We say two branches
are conflicting, if neither one is an extension of the other. We
say two blocks are conflicting, if the branches led by them are
conflicting.

We use Figure 1 to illustrate our notation. b1 is committed
in view 1, while b2 and b3 are committed in view 2. A branch
led by b2 is the path from b2 to b0. b3, for instance, is an
extension of b2 and also an extension of b1. The height of b3
is 4, equal to the depth of the tree. The parent link for a block
b2 is a hash of its parent block b1. b3 and d3 are conflicting,
as the branches lead by them are conflicting.

With the syntax of BFT over graphs, we can recast the
safety definition of BFT as follows: no two correct replicas
commit two conflicting blocks. The liveness definition requires
that after GST, any operation proposed by a client will be
eventually executed.

IV. REVIEW OF TWO-PHASE BFT PROTOCOLS AND
OVERVIEW OF MARLIN

A. Review of HotStuff

HotStuff (in the rotating leader mode) delivers a proposal in
each view (height) and adopts a three-phase commit rule: pre-
pare phase, precommit phase, and commit phase. Each phase
uses a threshold signature to achieve linear communication. In
the prepare phase, the leader broadcasts a proposal (a block
with some view) to all replicas and waits for signed responses
(in the form of partial signatures) from a quorum of n − f
replicas to form a threshold signature as the prepare quorum
certificate (QC)—prepareQC. In the precommit phase, the
leader broadcasts prepareQC and waits for responses to form
precommitQC. Note the two phases can achieve safety but
not liveness (when the leader is faulty). So a third phase is
needed to broadcast precommitQC and form commitQC:
after receiving precommitQC, replicas become locked on the
QC and will not accept a conflicting block with the same view;
replicas may later unlock only if they are shown with a QC of
a higher view. After forming commitQC, the leader forwards
it to all replicas that then safely deliver the proposal.

In view changes, each replica sends its latest prepareQC to
the leader. After receiving a quorum of view change messages,
the leader selects the QC with the largest height, extends the
block for the QC with a new proposal.
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(a) HotStuff.

(b) Two-phase HotStuff (insecure).

(c) Marlin.
Fig. 2: View change snapshots for HotStuff, two-phase HotStuff
(insecure, with prepare and commit phases only), and Marlin. The
boxes represent possible view change snapshots.

B. Challenges of Building Two-phase HotStuff

To illustrate the challenges of reducing the phases of Hot-
Stuff, we begin with "two-phase HotStuff (insecure)" that has
a two-phase commit rule. The first phase is the prepare phase
with prepareQC, while the second phase is commit phase
with commitQC. In particular, after receiving prepareQC,
replicas become locked on the QC. The issue for the above
approach is the QC the new leader obtains from a quorum
of view change messages may not be the most recent QC
generated before view change. In other words, replicas may
be locked on a QC that the leader is not aware of. This scenario
leads to liveness problems. To illustrate the problems, we
define a notion of view change snapshot to denote a quorum
of view change messages (containing QCs) a leader collects.
Clearly, the leader may obtain different snapshots during view
change. Our analysis should thus cover all possible scenarios
for view change snapshots.

We say a view change snapshot is safe, if it includes the
most recent prepareQC before view change. Otherwise, we
say a snapshot is unsafe.

We use the view change snapshots in Figure 2 to explain
the liveness issues. These examples all consider a four-replica
setting, where p2 is the new leader, and p4 is faulty and may
choose to hide its latest QC. In all examples, we use dashed
lines for safe snapshots and solid lines for unsafe snapshots.

In HotStuff (Figure 2a), p1 has received a prepareQC
for b2, but p2 and p3 only have prepareQC for b1. The
faulty replica p4 may have received the prepareQC for b2
but chooses to hide the fact. In view change, the new leader
p2 may receive different view change snapshots. The dashed
box represents a safe snapshot, where p2 receives the view
change messages from p1, p2, and p3. The snapshot is safe,
as it includes the latest prepareQC (for b2). In this case, p2
will extend b2 with a new proposal which can be accepted
by all correct replicas. Meanwhile, the red solid box is an

unsafe snapshot, because the leader receives the view change
messages from p2, p3, and p4, and p2 can only receive the
prepareQC for block b1. Thanks to the two-phase-lock and
three-phase commit rule, no correct replica is locked on the
QC for block b2; any correct replica can accept the proposal.

In two-phase HotStuff (Figure 2b), if the leader p2 receives
view change messages from p1, p2, and p3 (a safe snapshot),
p2 extends b2 with a proposal which can be accepted by any
correct replica. In contrast, if the leader receives view change
messages from p2, p3, and p4 (an unsafe snapshot), p2 extends
b1 and proposes b′2. Since replica p1 is locked on the QC for
block b2, it will not accept the proposal b′2. Hence, replicas
may never resume normal case operations, impeding liveness.

C. Review of Existing "Two-Phase" Systems

We review existing solutions of two-phase BFT (Fast-
HotStuff, Jolteon, and Wendy). They differ in the way of
unlocking the locked QC of correct replicas. Both Fast-
HotStuff and Jolteon can be viewed as a hybrid of HotStuff
and the classic PBFT-like view change: the new leader should
present a proposal together with evidence of a quorum of
view change messages to unlock the locked QC. Hence, both
achieve quadratic complexity. Wendy takes a trial-and-error
approach. In particular, the leader first creates a proposal,
hoping that the block it proposes can be accepted by any
correct replica. If it turns out that some correct replicas are
locked on a QC for a conflicting block and do not accept the
proposal, the replicas send a NACK message to the leader. The
leader can then reply with a set of view change messages to
the replicas. Since the leader may need to collect signatures for
O(n) different messages, Wendy naturally considers aggregate
signatures and proposes a new aggregate signature using two
pairings for verification. One price to pay is a larger size
of public keys and a more expensive signing cost; the non-
pairing public-key cryptographic operations for verification
remain large—O(n2 log c) (c is the view number difference
defined in Wendy, a value should be reasonably large). As we
have argued in the complexity measures, Wendy uses O(n2)
authenticators when unlocking is needed.

D. Overview of Marlin

Marlin is, strictly speaking, the first linear BFT with two-
phase commit. Table I compares Marlin with other systems.

Fig. 3: View change in Marlin (chaining mode).
A new way of unlocking a locked QC. In Marlin, instead of
asking the leader to directly decide the highest QC based on
the view change snapshot it obtains, replicas vote to decide
the highest QC. Specifically, as depicted in Figure 3, the first
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protocol vc communication vc cryptographic operations vc authenticator vc # phases
HotStuff [52] O(nλ+ n log u) O(n2) non-pairings or O(n) pairings O(n) 3

Fast-HotStuff [34] O(n2λ+ n2 log u) O(n3) non-pairings or O(n2) pairings O(n2) 2
Jolteon [30] O(n2λ+ n2 log u) O(n3) non-pairings or O(n2) pairings O(n2) 2
Wendy [31] O(nλ+ n2 log u) O(n2 log c) non-pairings and O(n) pairings O(n2) 2 or 3

Marlin (this work) O(nλ+ n log u) O(n2) non-pairings or O(n) pairings O(n) 2 or 3
TABLE I: Comparison of HotStuff and two-phase variants. Here, vc stands for view change. The value u is the upper bound on the view
number; log u is the size of the the message space for u. c (used in Wendy only) is the view number difference between any replica and the
leader; c = O(u). The cryptographic operations distinguish between pairing operations and conventional public key cryptographic operations
(non-pairing operations): or means operations instantiated using signatures only or threshold signatures only. Note Wendy relies on both
("and"). While Wendy in view change has O(n2) authenticators, it uses O(n) pairings. As reported by Wendy, due to the use of pairings,
Wendy may be slower than HotStuff in view change.

phase of view change is a pre-prepare phase, where the leader
broadcasts a PRE-PREPARE message containing the highest
prepareQC it received. If the prepareQC in the message
equals the highest one that a replica received, then the replica
sends a partial threshold signature claiming the above fact
("yes"). The leader waits for signed responses from a quorum
of n − f replicas. If the leader receives n − f signed "yes"
responses, it can combine them to form a threshold signature
called pre-prepareQC which can be used as proof to unlock
the locked QC of any correct replica.
A half-baked attempt. The above idea alone does not im-
mediately lead to a BFT protocol that is live, because a
pre-prepareQC may not necessarily be formed: it is possible
the prepareQC that the leader broadcasts is not the highest
one for some correct replicas. Intuitively, one could ask these
correct replicas to send their higher prepareQCs as a pre-
prepare phase response. In this way, we distinguish two cases:
Case 1): a pre-prepareQC is formed; Case 2): a higher
prepareQC is obtained. Depending on which case would
occur, the leader extends the corresponding block. We find,
however, doing so will lead to a linear view change protocol
that commits a block in four phases and we cannot achieve
anything better, as one has to commit a block in three phases
after the pre-prepare phase to preserve liveness for the case
with successive view changes. Hence, while this approach
makes an interesting trade-off for HotStuff, it has a linear but
slower view change than HotStuff.
Virtual block. For a better solution, a natural idea is to also
propose a block in the pre-prepare phase such that the phase
is not "wasted." The apparent obstacle is that the leader, at
the beginning of the pre-prepare phase, does not know which
case (Case 1 or Case 2) will happen. Furthermore, if Case 2
occurs, a pre-prepareQC may not be formed.

In Marlin, we ask the leader to propose two blocks: one
normal block that extends the block for the highest QC the
leader received (Case 1); one virtual block that extends a block
(that may or may not exist) from a "virtual," safe snapshot
(Case 2). Each replica can either vote for one or two blocks
depending on the QC it is locked on. Interestingly (and not
obliviously), we find when the leader is correct, at the end of
pre-prepare phase, either of the following Case 1 or Case 2
will happen:
• Case 1: The leader receives n−f votes for the normal block,

i.e., the QC the leader receives is indeed the highest for
a quorum of replicas. The quorum of "yes" votes form a

pre-prepareQC for the normal block.
• Case 2: The leader receives n−f votes for the virtual block

and a pre-prepareQC is formed. Furthermore, a higher
prepareQC qc is received by the leader and we can prove qc
is higher than the prepareQC sent by the leader by exactly
1. Thus, the leader knows that the parent block of the virtual
block exists and has been voted by a quorum of replicas to
form qc. In other words, the virtual block now has a "real"
parent block. The leader uses the pre-prepareQC and the
higher prepareQC to validate the virtual block.

Figure 2c presents an example, where the leader p2 receives
QC for block b1. As p2 is unsure if there exists a higher QC,
it can simply propose b2 that extends b1 and b′2 that extends a
nil block. Here, p1 only votes for b′2, while p2 and p3 vote for
both b2 and b′2. After receiving the votes from p1 and p3 and
a prepareQC from p1, p2 can form a valid pre-prepareQC
for b′2. But a pre-prepareQC for b2 cannot be formed due to
the lack of the vote from p1. Even if a faulty leader may, in
extreme cases, collect two pre-prepareQCs, the scenario can
be handled by our protocol (in the following prepare phase).
Shadow blocks. One drawback for the above approach is that
the pre-prepare phase proposes two blocks but only decides
one block eventually. In Marlin, when the leader proposes two
blocks in this phase, the leader chooses the blocks that have
the same operations but different associated metadata, thereby
saving bandwidth.

V. THE MARLIN PROTOCOL

Marlin has two phases for normal operations (prepare phase
and commit phase) and three phases for view changes (pre-
prepare phase, prepare phase, and commit phase).

A. Marlin-Specific Data Structures

Normal blocks and virtual blocks. A block is represented
in the form b = [pl, pview, view, height, op, justify], where
pl is the hash of the parent block of b, pview is the view
number of the parent block of b, view is the view number of
b, height is the height of b, op is a batch of client operations,
and justify contains a quorum certificate (QC) for the parent
block of b. We will use b.x to denote the element x of b. In
a normal block, all fields should be specified. We also define
a virtual block, a special block used in view change. It differs
from a normal block in that its pl field is set to ⊥.
Message format. A message m contains several fields:
m.view, m.type, m.block, m.justify, and m.parsig.
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m.view is the view in which m is sent. m.type ∈
{NEW-VIEW, PRE-PREPARE, PREPARE, COMMIT}. m is called
a message for block b, if m.block = b. m.parsig contains a
partial signature and m.justify includes one or two QCs.
Quorum certificates. A quorum certificate (QC) is a threshold
signature of a message m for a block b. Given a quorum
certificate qc for m, type(qc) is m.type and block(qc) is
m.block. We use qc.x to denote the element x of m.block.
Rank of QCs and blocks. We introduce a notion of rank
(being inspired by but differing from [30]) that can simplify
our description. Intuitively, the rules of ranks help determine
if a new proposal can be safely accepted. In the common case,
ranks equal heights; more complex rank rules are used in the
view change. Each QC qc has a rank, denoted as rank(qc). The
rank(qc) does not implicitly return a value. Instead, we only
care if the rank of a QC is higher than that of another one.
The rank takes as input qc.view, type(qc), and qc.height. The
comparison rules are shown in Figure 4. If neither rank(qc1)
> rank(qc2) nor rank(qc2) > rank(qc1), then rank(qc1) =
rank(qc2).

rank(qc1) > rank(qc2), if one of the following is true:
(a) qc1.view > qc2.view;
(b) qc1.view = qc2.view, type(qc1) ∈ {PREPARE, COMMIT},

and type(qc2) = PRE-PREPARE;
(c) qc1.view = qc2.view, type(qc1), type(qc2) ∈ {PREPARE,

COMMIT}, and qc1.height > qc2.height.

Fig. 4: Rank comparison rules.
Figure 5 presents an example of ranks. According to

rule (a), rank(qc′3) > rank(qc2). According to rule (b),
rank(qc4) > rank(qc3) and rank(qc4) > rank(qc′3). According
to (c), rank(qc2) > rank(qc1). qc3 and qc′3 have the same rank,
although their heights are different.

Fig. 5: The rank of QC.
We also define rank of blocks. For any two blocks b1 and

b2, we say rank(b1) > rank(b2), if b1.view > b2.view or
(b1.view = b2.view, b1.height > b2.height, and b1.justify
is a prepareQC qc such that qc.view = b1.view).

B. Normal Case Protocol
Figure 6 and Figure 7 describe the pseudocode and the

communication pattern, respectively. Each replica pi maintains
four local variables: its current view cview, the last voted
block lb, lockedQC, and highQC. In particular, highQC
stores QCs to be sent in VIEW-CHANGE messages.
Prepare phase. We distinguish two cases, where Case N1
corresponds to actions for successive normal case operations
(with no view changes), and Case N2 corresponds to actions
after the pre-prepare phase in view change. Right now,
readers only need to understand Case N1 and should skip
Case N2. Case N1 actions are similar to other two-phase
HotStuff variants. Case N2 actions will become clear when
we describe the view change protocol in Sec. V-C.

• Case N1: highQC is a prepareQC for a normal block b′.
▷ The leader lv proposes a new block b, where b.view is
cview, b.pl is h(b′), b.height is b′.height+ 1, op includes
a batch of client operations, and b.justify is highQC.
• Case N2: highQC is a pre-prepareQC qc for a normal

block or highQC is of the form (qc, vc).
▷ Block b is set to block(qc).

Then lv broadcasts a PREPARE message m for b, where
m.view and m.justify are set to cview and highQC.

After receiving a PREPARE message m from lv such that
m.block = b, replica pi verifies whether the message is well-
formed, the proposal is created in the same view as cview,
and b has a higher rank than its last voted block lb. Then pi
verifies if m.justify is valid according to its local lockedQC
by checking if one of the following holds:
• Case N1: m.justify is a prepareQC qc.
▷ pi checks whether b extends block(qc), qc.view = cview
and rank(qc) ≥rank(lockedQC).
• Case N2: m.justify is a pre-prepareQC qc for a normal

block or m.justify is of the form (qc, vc).
▷ pi checks whether b is the same with block(qc), qc.view =
cview and rank(qc) ≥rank(lockedQC).
If m.justify is of the form (qc, vc), pi additionally verifies
if qc is a pre-prepareQC for a virtual block and validate
qc by verifying whether vc is a prepareQC, vc.view =
qc.pview, and vc.height = qc.height− 1.
Then pi sends lv a PREPARE message m′ for m.block

together with a partial signature for m′. Meanwhile, pi up-
dates its lb to m.block and sets highQC to m.justify. If
m.justify is a prepareQC, pi sets lockedQC to m.justify.
Commit phase. Upon receiving n − f signed responses for
the PREPARE message for b, the leader lv combines the partial
signatures to form a prepareQC qc. Then lv broadcasts a
COMMIT message m for b, where m.justify = qc.

After receiving a valid COMMIT message m from lv , replica
pi verifies whether the prepareQC included in the message
is generated in current view. Then pi sends to lv a signed
response for the COMMIT message for m.block. Replica pi
also updates its highQC and lockedQC to m.justify.

Upon receiving n − f signed responses for the COMMIT
message for b, lv forms a commitQC and forwards it to all
replicas that then commit block b and its ancestors.

C. View Change Protocol

A view change is the mechanism through which a leader is
replaced. A timeout is started when a replica enters a new view
and a view change is triggered after the value expires. The
pseudocode of the view change protocol is shown in Figure 9.
To start a new view v, each replica pi sets cview ← cview+
1 and sends a VIEW-CHANGE message m to current leader,
where m.block is lb, m.justify is highQC, and m.parsig
is a partial signature for lb.
Pre-prepare phase. The view change protocol begins with
a pre-prepare phase. This phase is the most interesting and
complex part of our protocol, and we describe it in full detail—
distinguishing the code for the leader and replicas.
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Let lv be the leader of view v. Each replica pi keeps track of four variables: the current view cview, the last voted block lb, highQC,
and lockedQC. Replicas initialize cview ← 1, lb← ⊥, highQC ← ⊥, and lockedQC ← ⊥.
Normal case for replica pi:
– PREPARE. (i) As a leader: broadcast a block b = [pl, pview, cview, height, op, highQC] in a PREPARE message m, where m.justify

is highQC, and b extends the block of highQC (Case N1) or b is the block of highQC (Case N2). (ii) As a replica: Upon receiving
a valid PREPARE message from lv , if m.block has a higher rank than lb and m.justify is valid according to lockedQC, send lv a
signed response for the PREPARE message, and set lb to m.block and highQC to m.justify. If m.justify is a prepareQC, set
lockedQC to m.justify.

– COMMIT. (i) As a leader: Upon receiving n−f signed responses for m, form a prepareQC qc for b and broadcast a COMMIT message
m for b where m.justify is qc. Then wait for n − f signed responses to form a commitQC for b and forward it to all replicas.
(ii) As a replica: Upon receiving a valid COMMIT message from lv , if m.justify.view = cview, send lv a signed response for the
COMMIT message and set highQC and lockedQC to m.justify. Then wait for a commitQC to commit b and its ancestors.

Fig. 6: Normal case operation for Marlin.

Fig. 7: Normal case operation.
As a leader: Upon receiving a quorum of VIEW-CHANGE
messages Mv for view v, lv begins the pre-prepare phase. In
particular, lv selects highQCv—valid QC(s) with the highest
rank included in Mv . In highQCv , there may be one or two
such QCs with the same (highest) rank. Also, let bv be a block
with the highest rank contained in the block field of Mv . We
distinguish three cases:
• Case V1 (Figure 8a): highQCv is a prepareQC qc and at

least one replica has voted for a block with a higher rank
than qc (i.e., rank(bv) > rank(block(qc))).
▷ lv proposes two blocks: a normal block b1 extending
block(qc) and a virtual block b2. b2.height and b2.pview are
set to qc.height+2 and qc.view. b1.justify and b2.justify
are both set to qc. Then lv broadcasts a PRE-PREPARE
message with two proposals m1 (for b1) and m2 (for b2).

• Case V2 (Figure 8b): highQCv is a prepareQC qc and
rank(block(qc)) ≥ rank(bv), or highQCv contains only one
valid pre-prepareQC qc.
▷ lv proposes a normal block b which extends block(qc).
Then lv broadcasts a PRE-PREPARE message m for b.

• Case V3 (Figure 8c): highQCv contains two valid
pre-prepareQCs qc1 and qc2.
▷ lv proposes two blocks: b1 that extends block(qc1) and b2
that extends block(qc2). Then lv broadcasts a PRE-PREPARE
message with two proposals m1 (for b1) and m2 (for b2).
For each block b, if a pre-prepareQC for a virtual block b′

is included in b.justify, the prepareQC for the parent block
of b′ should also be included in b.justify for verification. For
each proposal mi, mi.justify is set to mi.block.justify.

Then lv waits for n − f signed responses for the PRE-
PREPARE message to form a pre-prepareQC qc. If qc is a
QC for a normal block, lv sets highQC to qc; if qc is for a
virtual block and meanwhile a prepareQC vc with a higher
rank than highQCv is received, lv sets highQC to (qc, vc).

Note that Case V1 and Case V3 propose two blocks. To
reduce bandwidth, we ask them to be shadow blocks: they
share the same bulk data (client operations) but differ in

associated data only (e.g., height), so only one of them needs
to carry operations.
As a replica: Each correct replica may vote for one or two
proposals from lv . For each proposal mi, let qc be the QC with
the highest rank in mi.justify. Let b and b′ denote mi.block
and block(qc), respectively. Replica pi checks whether b
extends block b′ or b is a valid virtual block. If either case
is satisfied, we distinguish three cases:
• Case R1: If qc is a valid QC, rank(qc) ≥ rank(lockedQC),

and qc.view < cview, then pi sends lv a PRE-PREPARE
message m′

i together with a partial signature.
• Case R2: If mi.justify = qc, type(qc) = PREPARE,

qc.view < cview, qc.view = lockedQC.view, qc.height =
lockedQC.height−1, and b is a valid virtual block, then pi
sends lv a PRE-PREPARE message m′

i together with a partial
signature, where m′

i.justify is set to lockedQC.
• Case R3: If qc is a valid pre-prepareQC, qc.view < cview

and block(qc) = block(lockedQC), then pi sends lv a PRE-
PREPARE message m′

i together with a partial signature.
Prepare and commit phases. After the pre-prepare phase,
replicas switch to the prepare phase of the normal case and
now it becomes clear that Case N2 in Sec. V-B for the normal
case operation (code highlighted in gray) applies. In this case,
the leader has just obtained a valid pre-prepareQC for a
block and will send a PREPARE message for the block; replicas
need to verify the pre-prepareQC included in the received
PREPARE message. If the PREPARE message is formed for
a virtual block b, replicas have to additionally verify vc (a
prepareQC) such that block(vc) is the parent block of b.
Furthermore, in Case N2, replicas do not become locked on
a pre-prepareQC. (Otherwise, successive view changes may
create liveness issues in a way much like the insecure two-
phase HotStuff we analyzed.) In view change, replicas are
locked on the prepareQC for block b in the commit phase and
commit block b after receiving the corresponding commitQC.
Ranks vs. heights. Besides heights, we also define the rank
(for both QCs and blocks) that is additionally related to the
view number and the type of QCs. First, we define the rank for
QCs to simplify the description of safety rules in view change.
Second, we define the rank for blocks to enforce replicas to
vote for only one block in the prepare and commit phases:
note replicas can vote for two blocks during the view change,
likely forming two pre-prepareQCs with the same rank; we
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(a) Case V1: propose two shadow blocks with the
same op: a normal block b1 (extending a block for
the highQCv) and a virtual block b2 (extending
a nil block). The case occurs when the leader
receives a prepareQC and is unsure whether it
has a safe view change snapshot.

(b) Case V2: propose one block. This case
occurs when the leader is certain that it has a
safe view change snapshot.

(c) Case V3: propose two shadow blocks: b1 that
extends b0 and b2 that extends b′0. This case oc-
curs when the leader receives pre-prepareQCs
for blocks b0 and b′0 and is unsure whether some
correct replica is locked on the prepareQC for
one of them.

Fig. 8: Running examples for the pre-prepare phase in the view change.
Replica pi switches to the view change protocol if timeout occurs in any phases. Replica pi sets cview ← cview + 1 and sends its
VIEW-CHANGE m for view cview to the current leader, where m.block ← lb and m.justify ← highQC.
View change for replica pi in view v:
– PRE-PREPARE. (i) As a leader: Upon receiving Mv (a set of n− f VIEW-CHANGE messages for view v), let highQCv be the valid

QC(s) with the highest rank contained in the justify field of Mv and bv be (any) one block with the highest rank in the block field.
We distinguish three cases:
• Case V1: highQCv is a prepareQC qc and rank(block(qc)) < rank(bv): Let b′ denote block(highQCv). Broadcast a PRE-PREPARE

message m = m1||m2, where m1 is a proposal for a normal block b1 = [hash(b′), b′.view, cview, b′.height + 1, op, highQCv]
and m2 is a proposal for a virtual block b2 = [⊥, b′.view, cview, b′.height + 2, op, highQCv] such that both m1.justify and
m2.justify are set to highQCv .

• Case V2: 1) highQCv is a prepareQC qc and rank(block(qc))≥ rank(bv) or 2) highQCv contains one valid pre-prepareQC
qc: Let b′ denote block(highQCv). Broadcast a PRE-PREPARE message m for block b = [hash(b′), b′.view, cview, b′.height +
1, op, highQCv], where m.justify is highQCv .

• Case V3: highQCv contains two valid pre-prepareQCs qc1 (for a normal block) and qc2 (for a virtual block): Let b′1 and b′2 denote
block(qc1) and block(qc2), respectively. Broadcast a PRE-PREPARE message m = m1||m2, where m1 is a proposal for block b1 =
[hash(b′1), b

′
1.view, cview, b′1.height + 1, op, qc1] and m2 is a proposal for block b2 = [hash(b′2), b

′
2.view, cview, b′2.height +

1, op, (qc2, vc)]. In m2, vc is the prepareQC for the parent block of b′2.
▷ Wait for n−f signed responses for a PRE-PREPARE message, form a pre-prepareQC, update highQC and switch to PREPARE phase.

(ii) As a replica: Upon receiving from lv a valid PRE-PREPARE message m that may include one or two proposals (m1 and m2), if for
each such proposal mi, mi.justify is formed before view v, then do the following:
• Case R1: If mi.justify includes a valid QC qc and rank(qc) ≥ rank(lockedQC), send lv a signed response for mi.
• Case R2: If mi.justify is a valid prepareQC, qc.view = lockedQC.view and mi.block is a virtual block with height

lockedQC.height+ 1, send lv its lockedQC and a signed response for mi.
• Case R3: If mi.justify includes a valid pre-prepareQC qc and block(qc)=block(lockedQC), send lv a signed response for mi.

Fig. 9: View change for Marlin.

thus additionally track ranks of these blocks to trivially handle
the "forking" issue in the following prepare phase.
Happy path in view change. So far we have described the
protocol where the pre-prepare phase is needed for a three-
phase view change. There is, however, a happy path such that
the pre-prepare phase can be skipped: if the new leader lv
receives n − f VIEW-CHANGE messages with the same lb,
lv can combine the partial signatures into a prepareQC and
directly switch to the prepare phase. Hence, the view change
in Marlin may have two or three phases.
Chained Marlin. As in HotStuff and all its descendants,
Marlin fully supports the chaining (pipelining) mode. Note that
no new block is proposed in the prepare phase immediately
after the pre-prepare phase in an unhappy view change. The
feature happens to be similar to Wendy.

D. Proof of Correctness
We provide a proof of correctness for Marlin assuming the
optimal resilience of n = 3f+1. For safety, We first prove that
Marlin is safe within a view and across views. For liveness,
we prove that Marlin achieves liveness after GST.

Lemma 1. Let b1 and b2 be two blocks proposed in view v
such that the view of the parent block of b1 (denoted b′1) and
the view of the parent block of b2 (denoted b′2) are lower than

v. If the prepareQCs for b1 and b2 are both formed in view
v, then b1 = b2 and prepareQC for b1 is the prepareQC
with lowest height formed in view v.
Proof. Let b′′ be the block with the lowest height for which a
prepareQC was formed in view v. If the parent block of b′′ is
proposed in view v, b′′.justify should be a prepareQC for its
parent block, contradicting the definition of b′′. Thus, the view
of the parent block of b′′ is lower than v and b′′.justify is
formed in a view lower than v. Hence, rank(b1) = rank(b2) =
rank(b′′). As the prepareQCs for b1, b2, and b′′ are all formed
in view v, at least a correct replica has voted for b1, b2, and
b′′ in the prepare phase. As a correct replica never votes for
more than one blocks with the same rank in the prepare phase
within a view, it must hold that b1 = b2 = b. □
Lemma 2. For any two prepareQCs qc1, qc2, let b1 and b2
be block(qc1) and block(qc2), respectively. If b1 is conflicting
with b2, then qc1.view ̸= qc2.view.
Proof. Assume, towards a contradiction, that qc1.view =
qc2.view = v. As a valid QC consists of 2f + 1 matching
votes, at least a correct replica must have voted for both
block(qc1) and block(qc2) in view v. We consider two cases:

1) b1.height = b2.height. At least one correct replica must
have voted for prepareQC for both blocks with the same
rank, contradicting our protocol specification.
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2) b1.height ̸= b2.height. We assume, w.l.o.g.,
b1.height > b2.height. Let b′1 denote the block with the
lowest height on the branch led by b1 such that b′1.view =
v. Similarly, we define such a block b′2 for b2. Clearly,
b′2.height ≤ b2.height. Then the prepareQCs for b′1 and
b′2 are formed in view v and the parent blocks of b′1 and
b′2 are proposed before view v. By Lemma 1, b′1 = b′2.
Hence, b′1.height ≤ b2.height. Let b∗1 be the block on the
branch led by b1 such that b∗1.height = b2.height. Thus,
b∗1.height ≥ b′1.height and b∗1 ̸= b2. So b∗1.view = v and
at least one correct replica has voted both b∗1 and b2 in the
prepare phase in view v. As b∗1 and b2 have the same rank, it
must hold b∗1 = b2, a contradiction. □

Theorem 1. (Safety) If b1 and b2 are conflicting blocks, then
they cannot be both committed, each by a correct replica.

Proof. Assume, on the contrary, that both b1 and b2 are
committed, i.e., a commitQC has been formed for each
block. Let v1 and v2 be b1.view and b2.view, respectively.
By Lemma 2, v1 ̸= v2. W.l.o.g., we assume v1 < v2. As the
commitQC for b1 is formed from 2f + 1 partial signatures,
more than f + 1 correct replicas have received and updated
their lockedQC to prepareQC for b1 in view v1. If any
prepareQC qc formed in view v′(v1 < v′) is a QC for an
extension of b1, then the prepareQC for b2 cannot be formed
in view v′. Since correct replicas send signed responses for
the COMMIT message for b2 only after receiving prepareQC
for b2, the commitQC for b2 cannot be formed. To complete
the proof, we are left to prove that for any prepareQC qc
formed in view v′(v1 < v′), block(qc) is an extension of b1.
In fact, we prove something stronger in the following lemma:
Lemma 3. If f+1 correct replicas have set their lockedQC to
a prepareQC qc in view v, the block of any pre-prepareQC
or prepareQC formed in view v′ (such that v′ > v) is an
extension of block(qc).

Proof. Let b be block(qc). Assume there exists a
pre-prepareQC or prepareQC qc′ formed in view v′ for
block b′ and b′ is conflicting with b. Let b′′ denote the parent
block of b′. Since f+1 correct replicas has set their lockedQC
to qc in view v, one of these correct replicas, say, pi, must
have sent a message for qc′ for b′. Let qcl be the lockedQC of
pi when pi voted for b′ in the pre-prepare or the prepare phase.
Note qcl is a prepareQC. Since pi only updates its lockedQC
with a QC with a higher rank, rank(qcl) ≥ rank(qc).

We prove the lemma by induction over the view v′, starting
from view v + 1.
Base case: Suppose qc′ is a valid pre-prepareQC formed in
view v + 1. It holds that b′′.view < v + 1, qcl.view = v, and
qcl.height ≥ qc.height. From Lemma 2, block(qcl) does not
conflict with b, so block(qcl) is b or an extension of b. We
consider two cases: b′ is a normal block; b′ is a virtual block.

1) If b′ is a normal block, then b′.justify contains a QC
qc′′ for b′′. Since pi has voted for b′, one of the following two
conditions must be satisfied:
• qc′′.view < v + 1 and rank(qc′′) ≥ rank(qcl) (Case

R1). In this situation, type(qc′′) = PREPARE, qc′′.view = v,

and qc′′.height ≥ qcl.height. From Lemma 2, b′′ is b or an
extension of b. Thus, b′ must be an extension of b.
• b′′ = block(qcl) (Case R3). In this situation, b′ must be

an extension of b, as block(qcl) is b or an extension of b.
Either way, b′ cannot conflict with b, a contradiction.
2) If b′ is a virtual block, then there exists a prepareQC vc′

for b′′, such that vc′.view < v+1 and rank(vc′) ≥ rank(qcl).
By Lemma 2, b′′ must be b or an extension of b, contradiction.

Suppose qc′ a prepareQC formed in view v + 1. Let qc′′

denote the prepareQC with the lowest height formed in view
v+1. Then when block(qc′′) is broadcast in PREPARE message,
a valid pre-prepareQC is provided. Therefore, block(qc′′)
is an extension of b. By Lemma 2, block(qc′) cannot be
conflicting with block(qc′′). Since qc′.height ≥ qc′′.height,
b′ must be an extension of b, a contradiction.
Inductive case: Assume this property holds for view v′ from
v to v+k−1 for some k ≥ 1. We prove that it holds for v′ =
v+k. Suppose qc′ is a valid pre-prepareQC formed in view
v + k. According to Lemma 2 and the inductive hypothesis,
block(qcl) is b or an extension of b. We distinguish two cases:

1) If b′ is a normal block, then b′.justify contains a QC
qc′′ for b′′. Since pi has voted for b′, one of the following two
conditions must be satisfied:
• qc′′.view < v + k and rank(qc′′) ≥ rank(qcl) (Case R1)

By Lemma 2 and the inductive hypothesis, b′′ is b or an
extension of b. Therefore, b′ must be an extension of b.
• b′′ = block(qcl) (Case R3). In this situation, b′ must be

an extension of b, because block(qcl) is b or extension of b.
Either way, b′ cannot conflict with b, a contradiction.
2) If b′ is a virtual block, then there exists a prepareQC vc′

for b′′ such that vc′.view < v+ k and rank(vc′) ≥ rank(qcl).
Again, by Lemma 2 and the inductive hypothesis, b′′ must be
b or an extension of b, contradiction.

Now we assume qc′ is a prepareQC formed in view v+k.
Let qc′′ be the prepareQC with the lowest height formed in
view v+k. Then a valid pre-prepareQC for block(qc′′) must
have been formed. Thus, block(qc′′) is an extension of b. From
Lemma 2, b′ must be an extension of b, contradiction. □ ■

Lemma 4. In view change, one of the following must hold
for highQCv received by the leader: 1) highQCv is a
prepareQC; 2) highQCv contains one pre-prepareQC; 3)
highQCv contains two pre-prepareQCs with the same rank.

Proof. First note that highQCv contains at least one QC that
is either a pre-prepareQC or a prepareQC. If a prepareQC
qc is included in highQCv , then due to Lemma 2, highQCv

contains qc only. Hence, highQCv is a prepareQC (Case 1).
If no prepareQC is included in highQCv , then

highQCv contains one pre-prepareQC (Case 2), or more
pre-prepareQCs, in which case these pre-prepareQCs are
QCs formed in the same view. Since correct replicas vote
for at most two blocks in the pre-prepare phase, at most
two pre-prepareQCs with the same rank can be formed
within a view. In this case, highQCv contains at most two
pre-prepareQCs of the same rank (Case 3). □
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Lemma 5. After GST, there exists a bounded time period T
such that if all correct replicas remain in view v during T and
the leader for view v is correct, then a valid pre-prepareQC
can be formed.

Proof. In view change, the leader lv collects n − f VIEW-
CHANGE messages and calculates its highQCv to propose a
new block. By Lemma 4, one of the three cases must apply.
Suppose among all correct replicas, the lockedQC with the
highest rank is a prepareQC qc for b. Let b′ denote the parent
block of b, vb denote b.view. We distinguish two cases:

1) If b′.view < vb, then by Lemma 1, no prepareQC
with a lower height than b can be formed in view vb. The
lockedQC of any correct replica is either qc or a prepareQC
formed before vb. As prepareQC for b is formed in view
vb, at least f + 1 correct replicas have set their highQC
to pre-prepareQC qc′ for b. Thus, Mv contains at least
one VIEW-CHANGE message from these replicas. Since cor-
rect replicas update their highQC with pre-prepareQC or
prepareQC with a higher rank, the rank of QC(s) in highQCv

is no less than rank(qc′).
If the rank of QC(s) in highQCv is equal to rank(qc′), then

highQCv contains qc′. Then the block proposed by lv extend-
ing b will be voted by all correct replicas for pre-prepareQC
in view v, as either Case R1 or R3 is satisfied.

If the rank of QC(s) in highQCv is higher than rank(qc′),
then for any QC qch in highQCv , qch.view > vb or
(qch.view = vb and type(qch) = PREPARE). Either way, by
Lemma 1, rank(qch) ≥ rank(qc). Then the block(s) proposed
by lv in view v will be voted by all correct replicas for
pre-prepareQC, because Case R1 is satisfied.

2) If b′.view = vb, then b.justify is a prepareQC qc′ for
b′. At least f + 1 correct replicas have set their highQC to
qc′. Thus, Mv contains at least one VIEW-CHANGE message
from these replicas. The rank of QC(s) in highQCv is no
less than rank(qc′). If the rank of QC(s) in highQCv is equal
to rank(qc′), then due to Lemma 2, highQCv is qc′. In this
case, lv proposes two blocks, one normal block b1 with height
b′.height+1 and a virtual block b2 with height b′.height+2.
At least b2 can be voted by all correct replicas to form a
pre-prepareQC qcv , since Case R1 or R2 is satisfied. If the
prepareQC vc for b′ is received by lv , lv updates its highQC
to (qcv, vc) and qcv is a valid pre-prepareQC. Otherwise a
valid pre-prepareQC for b1 can be formed.

If the rank of QC(s) in highQCv is higher than rank(qc′),
we know the rank of QC(s) in highQCv is no less than
rank(qc). The block(s) proposed by lv will be voted by all
correct replicas for pre-prepareQC, as Case R1 is satisfied.□

Theorem 2. (Liveness) After GST, there exists a bounded time
period Tf such that if all correct replicas remain in view v
during Tf and the leader for view v is correct, then an decision
can be reached.

Proof. By Lemma 5, a valid pre-prepareQC qc can be formed
in the new view if the leader is correct. Then the block of qc
can be accepted by all correct replicas in the prepare phase
since the rank of qc is higher than the lockedQC for any

correct replicas. Replicas can then resume the normal case
operation and a decision can be reached. ■

VI. IMPLEMENTATION AND EVALUATION

Overview. We implement Marlin and HotStuff in Go using
around 7,000 LOC, including 1,500 LOC for evaluation. We
implement the chaining (pipelining) mode for both Marlin
and HotStuff. We deploy the protocols in a cluster with 40
servers. Each server has a 16-core 2.3GHz CPU, 128 GB
RAM, 1000 MB NIC. We use f to represent the network size,
where we use 3f+1 replicas in each experiment. The network
bandwidth is 200 Mbps. We injected 40ms network latency for
all experiments carried. Except for the experiment for no-op
requests (containing digital signatures but no operations), all
transactions and reply messages are of size 150 bytes. We
use LevelDB as the underlying database. The frequency of
garbage collection (checkpointing) is set to every 5000 blocks.
We use ECDSA as the underlying signature. Our main finding
is unlike other HotStuff variants that are at least sometimes
less efficient than HotStuff (as reported in [30, 31]), Marlin
consistently outperforms HotStuff.
Throughput vs. latency. We first assess the throughput vs.
latency of the in failure-free scenarios for both Marlin and
HotStuff. We report throughput vs. latency for f = 1 to
f = 30 in Figure 10a-10f. As shown in the figures, by
reducing the number of phases of HotStuff from three to two,
the throughput of Marlin is 4.47%-34.4% higher than that of
HotStuff. In particular, when f = 1, Marlin achieves peak
throughput of 101 ktx/sec, 27.2% higher than that of HotStuff.

Note that our implementation appears to have lower perfor-
mance than those in prior works [2, 30, 31, 52]. This reason
is that our implementation writes data into the database rather
than into memory and we run checkpointing in the backend.
Thus, our experiments are more realistic than prior ones.
Scalability. We report the peak throughput of Marlin and
HotStuff for f = 1 to f = 10 in Figure 10g. The peak
throughput of Marlin is 11.56%-34.4% higher than that of
HotStuff. When f grows, the throughput of Marlin degrades
in a way much like HotStuff. In our case, when f is greater
than 5, the performance downgrades significantly. However,
even when f = 10, the throughput of Marlin can still be as
large as 23.82 ktx/s.

We also conduct the same experiments for no-op requests.
Due to space limitation, we only report the performance for
f = 1, f = 2, and f = 5 in Figure 10h. The performance
of these no-op experiments for both Marlin and HotStuff is
consistently higher than the one for experiments with larger
requests and replies (150 bytes). For instance, when f = 1, the
peak throughput for no-op requests is 16.7% higher than that
with the large request size. When f increases, the performance
does not downgrade as much as that for large request sizes. For
instance, when f = 5, the peak throughput of Marlin is still
101 ktx/s, almost twice higher than the experiment using 150-
byte requests. In other words, the protocols are more scalable
for smaller requests and replies.
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(a) Throughput vs. Latency (f = 1).
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(b) Throughput vs. Latency (f = 2).

0 10 20 30
0

200

400

600

800

1,000

Throughput (ktx/sec)

L
at

en
cy

(m
s)

HotStuff Marlin

(c) Throughput vs. Latency (f = 5).
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(d) Throughput vs. Latency (f = 10).
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(e) Throughput vs. Latency (f = 20).
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(f) Throughput vs. Latency (f = 30).
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(g) Peak throughput.
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(h) Peak throughput for no-
op requests and replies.
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(j) Peak throughput of the
rotating-leader mode under
failures (f = 3).

Fig. 10: Performance of Marlin and HotStuff.

Performance of view changes. We evaluate the performance
of view changes. We compute the view change latency from
the point when a replica starts the view change to the point
when the first block is committed after the view change. We
first submit a few client requests and then crash the leader
to assess the performance of view change. For Marlin, we
force our code to execute both happy and unhappy paths to
fully understand the performance. As shown in Figure 10i, the
latency for HotStuff is 182 ms when f = 1 and 384 ms when
f = 10. Meanwhile, in the happy path, the latency for Marlin
is 123 ms for f = 1 and 229 ms for f = 10, being about 30%
to 40% lower than HotStuff. The latency for the unhappy path,
in contrast, is similar to HotStuff for both f = 1 and f = 10.
The results show that the view change protocol of Marlin is at
least as efficient as HotStuff. In practice, one could anticipate
the average latency of Marlin would be somewhere between
the happy path latency and the unhappy path latency.
Performance under failures. We assess the performance
of the rotating leader mode under failures. By the rotating
leader mode, we follow HotStuff implementation [1] (setting
up a timer) and Spinning [49] to rotate leaders periodically.
In our experiments, we let f = 3 and crash 1 or 3 replicas
at the beginning of the experiments. We set up the timer
for the rotating leader to 1s. We report the performance of

the failure-free case, the case under 1 failure, and the case
under 3 failures in Figure 10j. Both Marlin and HotStuff
suffer from performance degradation under failures. For the
1 failure scenario, the performance of Marlin and HotStuff
is 24.5% and 26.8% lower than that in the failure-free case,
respectively. When there are 3 failures, the performance of
Marlin and HotStuff is 36.11% and 38.66% lower, respectively.
The results are expected, as no requests can be proposed or
committed when a faulty replica is a leader. In all the cases,
Marlin consistently outperforms HotStuff. For instance, when
there are 3 failures, the throughput of Marlin is 34.8% higher
than that of HotStuff.

VII. CONCLUSION

This paper introduces Marlin, a novel BFT protocol that
commits operations in two phases and has a linear authenti-
cator communication. We prove the correctness of Marlin and
provide an efficient implementation for Marlin and HotStuff.
Via extensive evaluation, we show Marlin outperforms Hot-
Stuff in various scenarios.

ACKNOWLEDGEMENT

We thank DSN reviewers and our shepherd Vivien Quéma
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