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Abstract—We present hBFT, a hybrid, Byzantine fault-tolerant, replicated state machine protocol with optimal resilience. Under
normal circumstances, hBFT uses speculation, i.e., replicas directly adopt the order from the primary and send replies to the
clients. As in prior work such as Zyzzyva, when replicas are out of order, clients can detect the inconsistency and help replicas
converge on the total ordering. However, we take a different approach than previous work that has four distinct benefits: it requires
many fewer cryptographic operations, it moves critical jobs to the clients with no additional costs, faulty clients can be detected
and identified, and performance in the presence of client participation will not degrade as long as the primary is correct. The
correctness is guaranteed by a three-phase checkpoint subprotocol similar to PBFT, which is tailored to our needs. The protocol
is triggered by the primary when a certain number of requests are executed or by clients when they detect an inconsistency.

Index Terms—Byzantine, fault tolerance, state machine replication, performance, speculation

1 INTRODUCTION

s distributed systems develop and grow in size,

Byzantine failures generated by malicious at-
tacks, and software and hardware errors must be
tolerated. Byzantine agreement protocols are attrac-
tive because they enhance reliability of replicated
services in the presence of arbitrary failures. However,
Byzantine protocols come at a cost of high overhead
of messages and cryptographic operations. Therefore,
protocols that can reduce overhead can be attractive
building blocks.

A number of existing protocols also reduce over-
head on Byzantine agreement by moving some crit-
ical jobs to clients [13, 17, 19, 21, 33, 34]. But these
protocols come with trade-offs that we seek to avoid.
Specifically, while they all provide better fault-free
cases and reduce the message complexity, they sac-
rifice the performance of normal cases and may
even degrade the performance of fault-free cases. For
instance, the Zyzzyva [21] protocol is able to use
roughly half of the amount of messages and crypto-
graphic operations that PBFT [7] requires. However,
Zyzzyva's performance can be even worse than PBFT
if at least one backup fails. Additionally, these proto-
cols simplify the design by involving clients in the
agreement. However, they all require clients to be
correct in order to achieve correctness.

Therefore, our motivation for developing a new
protocol is to improve performance over PBFT with-
out being encumbered by some of these trade-offs.
Specifically, we have three key goals: first, we wish
to be able to show how critical jobs can be moved to
the clients without additional costs. Second, we wish
to tolerate Byzantine faulty clients. Third, we define
the notion of normal cases, which means the primary
is correct and the number of faulty backups does not

exceed the threshold. We wish to provide better per-
formance for both fault-free cases and normal cases.

This paper presents hBFT, a leader-based protocol
that uses speculation to reduce the cost of Byzantine
agreement protocols with optimal resilience, utilizing
n > 3f+1 replicas to tolerate f failures. hBFT satisfies
all of our stated goals. To accomplish this, hBFT
employs several techniques. First, it uses speculation:
backups speculatively execute requests ordered by the
primary and replies to the clients. As a result, correct
replicas may be temporarily inconsistent. ABFT em-
ploys a three-phase PBFT-like checkpoint subprotocol
for both garbage collection and contention resolution.
The checkpoint subprotocol can be triggered by the
replicas when they execute certain number of opera-
tions, or by clients when they detect the divergence
of replies. In this way replicas are able to detect any
inconsistency through internal message exchanges.
Even though the three-phase protocol is expensive,
it is not triggered frequently. Eventually hBFT can
ensure the total ordering of requests for all correct
replicas with very low cost.

1.1 Motivation

Our goal for hBFT is to offer better performance by
moving some critical jobs to the clients while minimiz-
ing side effects that can actually reduce performance
in many cases in previous work [17, 21, 33, 34].
First, hBFT moves some critical jobs to the clients
without additional costs. Moving critical jobs to the
clients is effective in simplifying the design and reduc-
ing the message complexity, partly because replicas
do not need to run expensive protocols to establish
the order for every request. Nevertheless, it does not
necessarily make protocols more practical. Indeed, it
may sacrifice performance in normal cases or even in



fault-free cases, e.g. the output commit in Zyzzyva
slows down both. hBFT achieves a simplified design
and better performance for both fault-free and normal
cases.

Second, hBFT can tolerate unlimited number of
faulty clients. Previous protocols all rely on the
correctness of clients. However, Byzantine clients
can dramatically decrease performance. For instance,
in the protocols that switch between subproto-
cols [17, 33, 34] (called abstracts in [17]), a faulty client
can stay silent when it detects the inconsistency. Even
if the next client is correct and makes the protocol
switch to another abstract, replicas are still incon-
sistent because of this “faulty request”. Similarly, in
Zyzzyva, faulty clients can keep silent when they
are supposed to send a commit certificate to make
all correct replicas converge. Faulty primaries in this
case can not be detected, eventually leading to in-
consistencies of replica states. Faulty clients can also
intentionally send commit certificates to all replicas
even if they receives 3 f +1 matching messages, which
slows down the performance.

Third, hBFT has the same operations for both fault-
free and normal cases. This shows that in leader-based
protocols, when the primary is correct, all the requests
are totally ordered by all correct replicas. Previous
protocols all achieve impressive performance in fault-
free cases while they employ different operations
when failure occurs, resulting in lower performance.
Although Zyzzyvab [21] makes the faulty cases faster,
it requires 5 f+1 replicas to tolerate f failures. In hBFT,
we achieve better performance in both normal fault-
free and normal cases using 3f + 1 replicas.

2 RELATED WORK

Fig. 1 compares several features for normal cases be-
tween BFT protocols, a selection of which are plotted
in Fig. 9. We provide the values for fault-free cases in
the caption for protocols that have different values.
The table is constructed based on the models to toler-
ate f failures. We measure throughput using the num-
ber of MACs each replica performs, including both
generation and verification. The latency is evaluated
by the number of communication steps (critical path),
which refers to the number of one way latencies. Since
we can batch concurrent requests for only the agree-
ment subprotocol (as discussed in Section ??), the
number of cryptographic operation between replicas
and the clients becomes the major obstacle to through-
put, especially when f grows. Compared to other
known, prior work, hBFT achieves the lowest bound
for almost every feature under high concurrency, and
can handle faulty clients.

Most current practical Byzantine fault tolerant pro-
tocols are developed based on PBFT [7], which is a
three phase leader-based protocol. Several subsequent
work focus either on increasing the number of faults

systems can tolerate or on improving performance.
There are trade-offs between the two. For instance,
Fab [26] is a two-phase PBFT protocol that is proved
to tolerate f failures by requiring at least 5f + 1
replicas in total. The garbage collection in our protocol
uses a tailored PBFT scheme, since it can guarantee
correctness, but is too expensive to be used for fault-
free and normal cases when the primary is correct.

Several protocols [17, 19, 21, 33, 34] move some
critical jobs to the clients to improve performance.
Zyzzyva and its variant [19] move output commit
to the clients to reduce message complexity in fault-
free cases. Other protocols [17, 33, 34] move the job
of switching of subprotocols to the clients. When one
subprotocol aborts, the protocol will switch to another.
hBFT also switches between normal case operation
and checkpoint subprotocol. However, iBFT does not
order any single request using checkpoint subpro-
tocol, instead, it is used only for contention resolv-
ing and garbage collection. Clients can facilitate the
progress in hBFT but clients do not need to provide
any “proof” to replicas.

Byzantine quorum systems [1, 25] tolerate Byzan-
tine faults under low concurrency. HQ [13] is a hybrid
quorum and Byzantine agreement protocol that also
uses a PBFT-like subprotocol to resolve contention.
Compared to HQ, hBFT does not have an additional
garbage collection scheme and it works well under
high concurrency.

3 SYSTEM MODEL

We consider a distributed system that tolerates a
maximum of f faulty replicas using 3f + 1 replicas
and unlimited number of faulty clients. We consider
Byzantine fault-tolerant replication problem, where
faulty replicas and clients behave arbitrarily. In ad-
dition, we assume independent node failures, which
can be obtained through techniques such as N-version
programming [28].

Safety, which means requests are totally ordered by
correct replicas, holds in any asynchronous system,
where messages can be delayed, dropped or delivered
out of order. Liveness, which means correct clients
eventually receive replies to their requests, is ensured
assuming partial synchrony [15]: synchrony holds
only after some unknown global stabilization time,
but the bounds on communication and processing
delays are themselves unknown.

Operations are executed in an atomic broadcast
model, where correct replicas agree on the set of
requests and the order of them. In the description that
follows, when we refer to fault-free cases, we mean
there are no replica failures, and when we refer to
normal cases, we mean the primary is correct and the
number of faulty backups is between 1 and f.

We use digital signatures, message authentication
codes (MACs), and message digests to prevent spoof-
ing and to detect corrupted messages. For a message



PBFT [7] | Q/U [1] | HQ [13] | FaB [26] | Zyzzyva [21] | hBFT
Cost Total replicas | 3f+1 5f+1 3f+1 5f+1 3f+1 3f+1
Throughput Primary 9+ 8 | oqsfl | agapl | 143 | a4sp BT [ o4t
(MAC ops/request) | Backup 24+ 3 1 24 8 | 44 afl 1422 44 5f 447 [ 2438
Client 2+2f 2+8f 4+4f 1+5f 4+ 10f* 2+6f
1-way Latency Critical path 4 2 4 3 58 3
Works well on concurrency? Yes No No Yes Yes Yes
Handle faulty clients? No No No No No Yes

Fig. 1. Comparison of BFT protocols in normal cases tolerating f faults and using batch size b. TFault-free
cases:2 + 3L. *Fault-free cases:2 + 1. *Fault-free cases:2 + 6 . *Fault-free cases: 3. |Q/U and HQ are leader-
free quorum systems that do not differentiate primary and backups.

m, (m); denotes the message with digital signature
signed by replica p;, D(m) denotes the message digest,
and (m) denotes the message with MAC p; j(m). The
MAC p; ;(m) is generated using secret key shared by
replica p; and p;.
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Fig. 2. Layered Structure of hBFT

4 THE hBFT PRoTOCOL

The hBFT protocol is a hybrid, replicated state
machine protocol. It includes four major compo-
nents: (1) agreement, (2) checkpoint (3) view change,
(4) client suspicion. As illustrated in Fig. 2, we employ
a simple agreement protocol for fault-free and normal
cases, and use a three-phase checkpoint subprotocol
for contention resolution as well as garbage collection.
The checkpoint subprotocol can be triggered by repli-
cas when they execute a certain number of requests or
by clients when they detect the divergence of replies.
The view change subprotocol ensures the liveness
of the system and can coordinate the change of the
primary. View changes can occur during normal oper-
ations or in the checkpoint subprotocol. In both cases,
the new primary initializes a checkpoint subprotocol
immediately and resumes to the agreement protocol
until a checkpoint becomes stable. The client suspicion
subprotocol prevents faulty clients from attacking the
system.
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Fig. 3. Fault-free and Normal Cases of Zyzzyva

Why another speculative BFT protocol?

hBFT uses speculation that overcomes some prob-
lems Zyzzyva experiences. Zyzzyva [21] also uses
speculation and it moves output commit to the clients
to enhance the performance. If we replace digital
signatures with MACs and batch concurrent requests
in Zyzzyva, the performance degrades in normal cases
and even fault-free cases. Fig. 3 illustrates the behav-
ior of Zyzzyva [21]. Replicas speculatively execute the
requests and respond to the client. The client collects
3f + 1 matching responses to complete the request. If
the client receives between 2f + 1 and 3f matching
responses, it sends a commit certificate to all replicas,
which contains the response with 2f + 1 signatures.
This helps replicas converge on the total ordering.
However, a commit certificate must be verified by
every other replica, which causes computing overhead
for both clients and replicas. The use of MACs instead
of digital signatures makes Zyzzyva perform even
worse than PBFT under certain configurations!. For a

1. The use of MACs instead of digital signatures makes protocols
much faster. As mentioned in Aardvark [11], on a 2.0GHz Pentium-
M, openssl 0.9.8g can compute over 500,000 MACs per second for 64
byte messages, but it can only verify 6455 1024-bit RSA signatures
per second or produce 309 1024-bit RSA signatures per second.
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reply message r by replica p;, (r/, u; (')} must be sent
to the client, where ' = (r, p; 1(r), pi2(r) - - pi (1))
and i, ,(r) denotes the MAC generated using secret
key shared by p, and p,. Therefore, every replica
must include 3f + 1 MACs for every reply mes-
sage (compared with 1 if digital signatures are used).
The performance is therefore dramatically degraded.
Assuming b is the batch size, the primary must per-
form 4 +5f + % MACs in normal cases, which are
even worse than the 2 4 % MAC:s for PBFT for some
band f. Thus in hBFT, we seek to avoid this problem.

4.1

The agreement protocol orders requests for execu-
tion by replicas. The algorithms for the primary,
backups, and clients are defined in Algorithm 1 to
Algorithm 3. As illustrated in Fig. 4, a client ¢ invokes
the operation by sending a m = (Request, 0,1, c). to
all replicas where o is the operation, ¢ is the local
timestamp. Upon receiving a request, the primary p;
assigns a sequence number seq and then sends out a
(Prepare, v, seq , D(m), m, c) to all replicas, where v is
the view number, D(m) is the message digest.

A (Prepare) message will be accepted by a backup
p; provided that:

— It verifies the MAC;

— The message digest is correct;

— Itis in view v;

— seq = seq;+1, where seq; is the sequence number
of its last accepted request;

— It has not accepted a (Prepare) message of the
same view and sequence number but a different
request.

Agreement Protocol

If a backup p; accepts the (Prepare) message, it
speculatively executes the operation and sends a reply
message (Reply, v,t,seq ,dseq, ¢) to ¢ and also a com-
mit message (Commit, v, seq ,seq ,m, D(m), c) to all
other replicas except the primary, where J,., contains
the speculative execution history.

In order to verify the correctness of the speculative
executed request, a replica collects 2f + 1 matching
(Commit) messages from other replicas to complete a
request. If a replica receives f + 1 matching (Commit)
messages from different replicas but has not accepted
any (Prepare) message, it also speculatively execute

the operation, sends a (Commit) message to all repli-
cas, and sends a reply to the corresponding client.
When the replica collectes 2 f+1 matching messages, it
puts the corresponding request in its speculative exe-
cution history. However, it is possible that a replica re-
ceives f + 1 matching (Commit) messages from other
replicas that are different from its accepted (Prepare)
message. Under such circumstance, the replica can
simply send a (View-Change) message to all replicas.
If a replica votes for view change, it stops receiv-
ing any messages except the (New-view) and the
checkpoint messages. See Section 4.3 for the detail of
view change subprotocol. This is to ensure that if at
least f + 1 correct replicas speculatively executes a
request, all the correct replicas learn the result. If any
other correct replicas receive inconsistent messages,
the primary must be faulty and the replicas stop
receiving messages until view change occurs.

A client sets a timeout for each request, if it gathers
2f 4+ 1 matching speculative replies from different
replicas before the timeout expires, it completes the
request. If a client receives fewer than f + 1 matching
replies before the timeout expires, it retransmits the
requests. Otherwise, when contention occurs (client
receives between f+1 and 2f+1 matching replies be-
fore timeout expires), client can facilitate the progress
by sending a (PANIC, D(m), t, c). message to all repli-
cas. If a replica receives a (PANIC) message, it for-
wards the message to all replicas. If a replica does
not receive any (PANIC) message from the client but
receives a (PANIC) message from other replicas, it for-
wards the (PANIC) message to all replicas. A (PANIC)
message is valid if a replica has speculatively executed
m. If a replica accepts a (PANIC) message, it stops
receiving any messages except the view change and
checkpoint messages. If the primary does not initialize
the checkpoint subprotocol, the replica votes for view
change. The forwarding of (PANIC) messages aims at
two goals. On the one hand, this prevents checkpoint
protocol from happening too frequently. Namely, all
the correct replicas receive the (PANIC) message be-
fore the checkpoint protocol is triggered. On the other
hand, this preventing the clients from attacking the
system by sending (PANIC) message to a portion of
replicas. If a fault client sends a (PANIC) message to
a correct backup, the replica will stop receiving any
messages while other replicas still continue th agree-
ment protocol. This forwarding mechanism ensures
that if at least one correct replica receives the (PANIC)
message, all the replicas receive the (PANIC) message
and enter the checkpoint protocol.

The primary initializes the checkpoint subprotocol
if it receives the (PANIC) message from the client or
2f + 1 (PANIC) messages from other replicas. The
correctness of the protocol is therefore guaranteed by
the three-phase checkpoint subprotocol.

The panic mechanism facilitates the progress when
the primary is faulty. Specifically, in a partial syn-



chrony model where the value of client’s timeout is
properly set up, if a correct client does not receive
enough matching replies before timer expires, the
primary either sends inconsistent (Prepare) messages
to the replicas or fails to send consistent messages to
the replicas. In this case, instead of using traditional
approach where replicas detect themselves by waiting
for longer period of time, the client can directly trigger
the checkpoint protocol in order to verify the correct-
ness of the primary. See Section 4.2 for the detail of
checkpoint subprotocol.

Algorithm 1 Primary

1: Initialization:
2. A
3: seq <+ 0

{All replicas}
{Sequence number}

4: on event (Request, 0,t,c).

5  seq <+ seq+1

6: send (Prepare,v, seq , D(m),m,c) to A
7. send (Reply,v,t,seq ,dseq,C) tO

Algorithm 2 Backup
1: Initialization:

2. A {All replicas}
3: cent 0 {Counter of (Commit) messages}
4: seq; <0 {Sequence number}
5. on event (Request, o,t,¢).

6. send (Request,o,t,c). to the primary

7. on event (Prepare, v, seq , D(m), m,c)
if seq = seq; + 1 then

9: seq; <— seq
10: send (Commit, v, seq ,0seq ,m, D(m),c) to A
11: send (Reply,v,t, seq ,dseq,¢) to ¢

12: on event (Commit, v, seq ,dseq ,m, D(M), C)
132 cent<«cnt+1

14:  if ent = f + 1 and seq = seq; + 1 then

15: seq; + seq

16: send (Commit, v, seq ,0seq ,m, D(m),c) to A
17: send (Reply,v,t, seq ,dseq,¢) to c

18:  if ent = 2f + 1 then

19: ent < 0 {Complete the request}

hBFT guarantees correctness by only having two
phases. If the client has received 2f 4+ 1 matching
replies, at least f+1 correct replicas receive consistent
order from the primary. Therefore, all correct replicas
receive at least f + 1 matching (Commit) messages. If
those replicas do not receive the (Prepare) message,
they will execute the request. Otherwise, if they detect
the inconsistency, they stop receiving any messages
until the current primary is replaced or the checkpoint
subprotocol is triggered. In the latter case, the incon-
sistency will be reflected and fixed in the checkpoint
subprotocol.

Algorithm 3 Client
1: Initialization:

2. A {All replicas}
3: cent <0 {Counter of reply messages}
4: send (Request,o,t,c), to A

5. start(A) {Start a timer}
6: on event (Reply,v,t, seq ,0seq, C)

7. ent4—cnt+1

8: if ent =2f 4 1 then

9: ent <+ 0 {Complete the request}

4.2 Checkpoint

We use a three-phase PBFT-like checkpoint proto-
col. The reasons are three-fold. First, the agreement
protocol uses speculative execution and replicas may
be temporarily out of order. The three-phase check-
point protocols resolve the inconsistencies. Second, if
a correct client triggers checkpoint protocol through
panic mechanism, the checkpoint protocol resolves
the inconsistencies immediately. Third, the checkpoint
protocol detects the behavior of the faulty clients if
they intentionally trigger the checkpoint protocol.
The checkpoint protocol works as follows. Only
the primary can initialize the checkpoint subprotocol,
which is generated under either of the two conditions:

— the primary executes certain number of requests.

— the primary receives (PANIC) message from the
client or receives 2f + 1 forwarded (PANIC) mes-
sages from other replicas.

In the latter condition, as mentioned in Section 4.1,
when replicas receive a valid (PANIC) message, it
forwards to all replicas. To goal is to ensure that all
the replicas receive the (PANIC) message and prevent
the faulty clients from sending a (PANIC) message to
all backups so that replicas will suspect the primary
even if it is correct.

The three-phase checkpoint subprotocol works as
follows: the current primary p; sends a (Checkpoint-
I, seq , D(M)) to all replicas, where seq is the sequence
number of last executed operation, D(M) is the mes-
sage digest of speculative execution history M. Upon
receiving a well-formatted (Checkpoint-I) message,
a replica sends a (Checkpoint-II, seq , D(M)) to all
replicas. If the digest and execution history do not
match its local log, the replica sends a (View-Change)
message directly to all replicas and stops receiving
any messages other than the (New-view) message.

A number of 2f + 1 matching (Checkpoint-II) mes-
sages from different replicas form a certificate, de-
noted by CER,(M,v). Any replica p; that has the
certificate sends a (Checkpoint-III, seq ,D(M)); to
all replicas. Similarly, 2f + 1 (Checkpoint-III) mes-
sages form a certificate, denoted by CER2 (M, v). After
collecting CER2(M,v), the checkpoint becomes sta-
ble. All the previous checkpoint messages, (Prepare),



(Commit), (Request,o,t,c)., and (Reply) messages
with smaller sequence number than the checkpoint
are deleted.

If a view change occurs in checkpoint subprotocol,
as described in Section 4.3, the new primary initializes
a checkpoint immediately after the (New-view) mes-
sage. The same three-phase checkpoint subprotocol
continues until one checkpoint is completed and the
system stabilizes.

4.3 View Changes

The view change subprotocol elects a new primary.

By default, the primary has id p = v mod n, where n

is the total number of replicas, and v is the current

view number. View changes may take place in the
checkpoint subprotocol or the normal operations. In

both cases, the new primary reorders requests using a

(New-view) message and then initializes a checkpoint

immediately. The checkpoint subprotocol continues

until one checkpoint is committed.

A (View-Change,v + 1,P, Q,R); message will be
sent by a replica if any of the following conditions
is true, where P contains the execution history M
from CER4(M,v) the replica collected in previous
view v, Q denotes the execution history from the
accepted (Checkpoint-I) message, and R denotes the
speculatively executed requests with sequence num-
ber greater than its last accepted checkpoint:

— It starts a timer for the first request in the queue.
The request is not executed before the timer
expires;

— It starts a timer after collecting f + 1 (PANIC)
messages. It has not received any checkpoint
messages before the timer expires;

— It starts a timer after it executes certain number
of requests. It has not received any checkpoint
messages before the timer expires.

— It receives f + 1 valid (View-Change) messages
from other replicas.

Timers with different values are set for each case and

are reset periodically.

When the new primary p; receives 2f (View-
Change) messages, it constructs a (New-view) mes-
sage to order all the speculatively executed requests.
The system then moves to a new view. The principle
is that any request committed by the clients must be
committed by all correct replicas. The new primary
picks up an execution history M from the P and a
set of requests from the R of checkpoint messages.
To select a speculative execution history M, there are
two rules.

A If some correct replica has committed on one check-
point that contains execution history M, M must
be selected, provided that:

Al. At least 2f + 1 replicas have CER1 (M, v).

A2. At least f + 1 replicas have accepted

(Checkpoint-I) in view v' > v.

B If at least 2f+1 replicas have empty P components,
then the new primary its last stable checkpoint.

Similarly, for each sequence number greater than
the execution history M and smaller than the largest
sequence number in R of checkpoint messages, the
primary assigns a request according to R. A request
m is chosen if at least f + 1 replicas include it in
R of their checkpoint messages. Otherwise, NULL
is chosen. We claim that it is impossible for f + 1
replicas to include one request m, and another f + 1
replicas include m’ with the same sequence number.
Namely, if f + 1 replicas include a request m, at least
one correct replica receives 2f+1 (Commit) messages.
Similarly, at least one correct replica receives 2f + 1
commit messages with request m’. The two quorums
intersect in at least one correct replica. The correct
replica must have sent both (Commit) message with
m and (Commit) message with m’, a contradiction.

The execution history M and the set of requests
form M’, which is composed of requests with se-
quence numbers between the last stable checkpoint
and the sequence number that has been used by
at least one correct replica. The new primary then
sends a (New-View,v + 1,V, X, M'); message to all
replicas, where V contains f + 1 valid (View-Change)
messages, X contains the selected checkpoint. The
replicas then run the checkpoint subprotocol using
M’'. The checkpoint subprotocol continues until one
checkpoint is committed.

4.4 Client Suspicion

Faulty clients may degrade the performance of the
system, especially for protocols that move some crit-
ical jobs to the clients. In #BFT, unlimited number
of faulty clients can be detected. We would like to
focus on the unfaithful but “legal” messages a faulty
client can craft to slow down the performance or cause
incorrectness. To be specific, a faulty client can do the
following:

— It sends inconsistent requests to different replicas.
The primary may not be able to order “every”
request before the timeout expires. In this case, a
correct primary may be removed.

— It intentionally sends (PANIC) messages while
there is no contention. Unnecessary checkpoint
subprotocol will be triggered, which slows down
the performance. However, if the client frequently
triggers “valid” checkpoint operations, the over-
all throughput degrades too.

— It does not send (PANIC) messages if it receives
divergent replies, which leaves replicas temporar-
ily inconsistent.

The client suspicion subprotocol in hBFT focus on
the first two. If the third one occurs, the checkpoint
subprotocol can be triggered by the next correct client
if it detects the divergence of replies or by the primary
when replicas execute certain number of requests.



To solve the first problem, we ask clients to mul-
ticast the request to the replicas and every replica
forwards the request to the primary. The primary
orders a request if it receives the request or if it
receives f + 1 matching requests forwarded by back-
ups. If a replica p; receives a (Prepare) message with
a request that is not in its queue, it still executes
the operation. Nevertheless, such faulty behavior of
clients will be identified as suspicious, and if the
number of suspicious incidents from the same client
exceeds certain threshold, p; will send a (Suspect, c);
message to all replicas.

Another reason clients send their requests to all
replicas is that there are many drawbacks clients send
requests to the primary only?. For instance, a faulty
primary can delay any request, no matter it receives
from the client or other replicas, which finally makes
all clients multicast their requests to all replicas and
experience long latency. Faulty primary can perform
performance attack such as timeout manipulation dis-
cussed in previous works [2, 11, 29]. Furthermore, it is
also difficult to make clients keep track of the primary.
If the client sends its request to a faulty backup, the
faulty backup can also ignore this request although it
is supposed to forward the request to the primary. All
these problems move the correctness of the protocols
to the detection of faulty replicas.

For the second problem where a faulty client in-
tentionally sends a (PANIC) message to the replicas
to trigger the checkpoint subprotocol, the protocol
naturally detects the faulty behavior. Intuitively, if the
request is committed in both agreement protocol and
checkpoint protocol without view change, the client
can be suspected. Nevertheless, a correct client might
be suspected as well. For instance, the following two
cases are indistinguishable.

— The replicas are correct and reach an agreement in
the agreement protocol. When they receiving the
(PANIC) message from a faulty client, the request
is committed without view change and the client
is suspected.

— The primary is faulty and the client is correct. The
primary sends the request to f + 1 correct replica
and another fake request to the left f correct
replicas. The f correct replicas will not execute th
request. When the replicas receive (PANIC) mes-
sage and starts checkpoint protocol. The f faulty
replicas collude and make the request committed.
Although the f correct replicas learn th result
and remain consistent, the correct client will be
suspected.

2. In some Byzantine agreement protocols, clients send requests
to only their known primary. If a backup receives the request, it
forwards the request to the primary, expecting the request to be
executed. The client sets a timeout for each request it has. If it does
not receive enough number of matching responses before timeout
expires, it retransmits the request to all replicas.

To distinguish the above two cases, we modify the
agreement protocol by simply replacing the MAC of
(Prepare) message with digital signatures, which is
called Almost-MAC-agreement. When a replica sends a
(Commit) message, it appends the (Prepare) message.
If a client does not receive valid (Prepare) message
from the primary but receives from other replicas, it
still execute the requests, sends (Commit) messages
to other replicas and send reply to the client. Oth-
erwise, if a replica receives two valid and conflicting
(Prepare) messages, it directly sends inconsistent mes-
sages to all replicas and votes for view change. As
proved in Claim 2, the protocol guaranteed that cor-
rect clients will not be removed. This optimization can
also solves the problem as discussed in Section 5.1.

The modification of agreement protocol results in
2 + @ cryptographic operations for the primary.
To reduce the overall cryptographic operations, hBFT
switches between the agreement protocol and Almost-
MAC-agreement when executing certain number of
requests.

The client will only be suspected when replicas
are running Almost-MAC-agreement. In addition, the
client must be suspected by 2f 4 1 replicas to be
removed. If the number of such incidents exceeds
certain threshold, replicas will suspect the client and
send a (Suspect) message to all replicas. Similar to
view change subprotocol, if a replica receives f + 1
(Suspect) messages, it generates a (Suspect) message
and sends to the replicas. If a replica receives 2f + 1
(Suspect) messages, indicating that at least one correct
replica suspects the client, the client can be prevented
from accessing the system in the future.

Worst Case Scenario We would like to analyze the
worst case where a correct client can be suspected,
mainly due to the network failure. It happens if any
of the following is true:

(1) The request from client fails to reach f+ 1 correct
backups before the backups receive the (Prepare)
message. In this case, since the f+ 1 correct back-
ups do not receive the request in the (Prepare)
message, they will suspect the client.

(2) Reply message(s) from correct replica(s) fails to
reach the client before the timeout expires. Since
the client does not receive 2f + 1 matching
replies before the timeout expires, the client sends
(PANIC) messages while there is no contention.

The latter condition may occur due to inappropriate
value of the timeout regarding the network condition
or due to the attack by the primary. For instance,
a faulty primary can intentionally delay (Prepare)
message for some correct replicas, making correct
clients send (PANIC) message while replicas are “con-
sistent”. However, if the value of the timeout is ap-
propriately set up, as proved in Claim 2, a correct
client will not be removed. We set up a large enough
timeout for clients so that if at least f + 1 correct



replicas execute a requests, all the replicas will send
reply messages to the client before its timer expires.

4.5 Correctness

In this section, we sketch proofs for the safety and
liveness properties of hBFT under optimal resilience.
For simplicity, we assume there are 3f + 1 replicas.

4.5.1

Theorem 1 (Safety): If requests m and m’ are com-
mitted at two correct replicas p; and p;, m is com-
mitted before m' at p; if and only if m is committed
before m’ at p;.

Proof: The proof proceeds as follows. We first
prove the correctness of checkpoint subprotocol,
which follows the correctness of PBFT, as shown in
Claim 1. We then show the proof of the theorem based
on the claim.

Claim 1 (Safety of Checkpoint): The checkpoint sub-
protocol guarantees the safety property.

Proof: We now prove that if checkpoints M and
M’ are committed at two correct replicas p; and p;
in checkpoint subprotocol, regardless of being in the
same view or across views, M = M’.

(Within one view) If p; and p; commit both in view v,
then p; has collected CER (M, v), which indicates that
at least f+1 correct replicas send (Checkpoint-III) for
M. Similarly, p; has CER2(M’, v), which indicates that
at least f+1 correct replicas send (Checkpoint-III) for
M’. Then excluding f faulty replicas, if M and M’
are different, at least one correct replica has sent two
conflicting messages for M and M’, which contradicts
with our assumption. Therefore, M = M’.

(Across views) If M is committed at p; in view v
and M’ is committed at p; in view v > v, M = M.
If M' is committed in view v/, then either condi-
tion A or B must be true in the construction of
the (New-view) message in view v’ (see Section 4.3).
However, if M is committed at p; in view v, p;
has CERy(M,v), which indicates that at least f + 1
correct replicas have CER1(M,v) and M in the P
component. Therefore, condition B cannot be true.
For condition A, p; can commit on M’ in view o’ if
both Al and A2 are true. A2 can be true if a faulty
replica sends a (View-Change) message that includes
(M',D(M"),v1), where v < v; < v'. However, con-
dition Al requires that at least f 4 1 correct replicas
have CER4(M’,v"). Since at least f+1 correct replicas
have CER(M,v), they will not accept M’ in any later
views. At least one correct replica sends conflicting
message(s), which contradicts with our assumption.
Therefore, M = M'. |

To prove Theorem 1, we first show that if two
requests m and m’ are committed at correct replicas
pi and p;, m equals m'. Then we show that if m, is
committed before my at p;, m; is committed before

Safety

myg at p;. The former part is shown across views and

within the same view.

— (Withing the same view) There are three cases:
the two requests are committed in agreement
subprotocol, two requests are both committed in
checkpoint subprotocol, one of them is committed
in checkpoint subprotocol. In the first case, if m is
committed at p;, p; receives 2f+1 (Commit) mes-
sages if the request is committed in agreement
protocol or 2f + 1 checkpoint messages as cer-
tificate if the request is committed in checkpoint
protocol. On the other hand, if m’ is committed at
pj, pj receives 2f+1 (Commit) messages or 2f+1
checkpoint messages. The two quorums intersect
in at least one correct replica. The correct replica
must send inconsistent messages, a contradiction.
Therefore, m equals m/'.

— (Across views) If m is committed at replica p;,
2f +1 replicas send (Commit) messages. At least
f + 1 correct replicas accept m, which will be
included in their (View-Change) messages. On
every view change, the new primary initializes a
checkpoint subprotocol to make the same order
of requests committed at all the correct replicas in
the (New-view) message. The correctness follows
from Claim 1.

Then we show that if m; is committed before msy
at p;, m1 is committed before my at p;. If a request is
committed at a correct replica, 2f + 1 replicas send
(Commit) messages. Since two quorums of 2f + 1
replicas intersect in at least one correct replica p;,
m; is committed with sequence number smaller than
ma. According to the former proof, if m; and mg are
committed at p;, they are committed with the same
sequence numbers.

By combining all the above, safety is proved.  [J

4.6 Liveness

Theorem 2 (Liveness): Correct clients eventually re-
ceive replies to their requests.

Proof: 1t is trivial to show that if the primary is
correct, clients receive replies to their requests. In the
following, we first show that correct clients will not
be removed. We then prove that faulty replicas and
faulty clients cannot impede progress by removing a
correct primary.

Claim 2 (Correct Client Condition): If the values of
the timeouts are appropriately set up, correct clients
will not be removed if they trigger a checkpoint.

Proof: If a correct client receives between f + 1
to 2f + 1 matching replies for a request m, it trig-
gers the checkpoint subprotocol. To remove a cor-
rect client, m must be executed by f + 1 replicas
in Almost-MAC-agreement protocol and committed
in the checkpoint subprotocol without view change.
Among the f + 1 replicas that accept (Prepare) mes-
sage in the agreement protocol, at least one is cor-
rect. If it receives a (Prepare) message, it appends



the message to (Commit) message and send to all
replicas. If at least one correct replica receive valid
and conflicting (Prepare) message from the primary,
it will send inconsistent messages and eventually all
the correct replicas vote for view change, a contradic-
tion that view change does not occur. Therefore, not
correct replica receives conflicting (Prepare) message.
In addition, if a correct replica does not received valid
(Prepare) message from the primary and receives
valid (Prepare) message appended with the (Commit)
message, it will accept the (Prepare) message and
sends (Reply) message to the client. In this case, the
client receives 2 f +1 matching replies, a contradiction
with the assumption that the client is correct. There-
fore, correct clients will not be removed by the client
suspicion protocol. O

Claim 3 (Faulty Replica Condition): Faulty replicas

cannot impede progress by causing view changes.

Proof: To begin with, we show that faulty repli-
cas cannot cause a view change by sending (View-
Change) message. At least f + 1 (View-Change) mes-
sages are sufficient to cause a view change. Even if
all faulty replicas vote for view change, they cannot
cause a view change. A faulty primary can cause a
view change. However, the primary cannot be faulty
for more than f consecutive views.

In addition, no (View-Change) message makes a
correct primary incapable of generating a (New-view)
message. For one thing, a correct primary is able
to pick up a stable checkpoint. Since at least f + 1
correct replicas have CER, for a checkpoint, the new
primary is able to pick it up. For another thing,
the new primary is able to pick up a sequence of
requests based on condition A or B. Either some cor-
rect replica(s) commits on a checkpoint or no correct
replica does. Condition Al can be verified because
non-faulty replicas will not commit on two different
checkpoint. Condition A2 is satisfied if at least one
correct replica accepts a (Checkpoint-I) message for
the same checkpoint and it votes for the authenticity
of the checkpoint. Therefore, the checkpoint can be
selected since it is authentic. Similarly, a set of ex-
ecuted request can be selected based on R in view
change. Namely, if the client completes a request, the
request must be ordered and accepted by at least
2f+1 replicas. Among them, at least f+1 replicas are
correct. If other replicas receive inconsistent (Prepare)
message and f+1 (Commit) messages, they will abort.
Therefore, it is not possible that a set of f + 1 replicas
include one request and another set of f + 1 replicas
include another request. In conclude, the new primary
is able to select a (New-view) message. O

Claim 4 (Faulty Client Condition 2): A faulty client
cannot impede progress by causing view changes.

Proof: If a faulty client intentionally triggers the
checkpoint subprotocol while replicas are consistent,
a view change will not occur. Replicas will take an
additional three-phase checkpoint subprotocol so that

requests committed in agreement subprotocol will
be committed in checkpoint subprotocol. Since such
faulty behavior of clients will be detected, the client
will be removed. O

To summarize, faulty backup(s) can not cause view
changes according to Claim 3. In addition, faulty
clients are not capable of removing a correct primary
according to Claim 4. Since faulty clients are eventu-
ally moved, replicas will handle requests from correct
clients. Finally, since the primary cannot be faulty
for more than f continuous views, clients eventually
receive replies to their requests. O

5 DISCUSSION
5.1

Existing protocols rely on different timeouts to pro-
vide liveness. As discussed in Section 4.4, the values
of timeouts are key to avoid some uncivil attacks.
Since we assume the weak synchrony model, it is
reasonable to set up timeouts according to the round-
trip time such as the technique used in Prime [2].
However, in several corner cases inappropriate values
of timeouts or network congestion makes a correct
replica suspect or remove a correct primary.

hBFT employs a client suspicion subprotocol that
is used to detect faulty clients. A faulty primary can
play tricks on timeouts to remove faulty clients. For
instance, the primary can send (Prepare) message to
f correct replicas and delay the (Prepare) message to
f + 1 correct replicas until the very end of timeout
of the client. The f + 1 correct replicas receive the
(Prepare) message and execute the request but they
do not reply to the clients “on time”. Since the client
does not receive enough number of replies before
the timeout expires, it sends (PANIC) message. How-
ever, all replicas are “consistent” since the primary
still sends out consistent (Prepare) messages. Correct
clients will be suspected.

We solve this problem by using Almost-MAC-
agreement protocol as discussed in Section [?]. The
optimization allows all replicas to execute the request
on time if at least one correct replica receives a valid
(Prepare) message, which prevents a faulty primary
from framing the clients.

Timeouts

5.2 Speculation

Speculation reduces the cost and simplifies the de-
sign of Byzantine agreement protocols, which works
well especially for systems with highly concurrent
requests. Speculation has been used by fault-free
systems and by systems that tolerate crash failures.
Therefore, hBFT also works well in adaptively toler-
ating crash failures to Byzantine failures. hBFT uses
speculation because replicas are always consistent for
both fault-free and normal cases where the primary
is correct. Every request takes three communication



steps to complete, and is the theoretical lower bound
for agreement-based protocols.

Speculation does not work well for systems that
have highly computationally consuming tasks or sys-
tems that have a high attack rate. The former prob-
lem can be handled by separating execution from
agreement [32]. The latter problem degrades the per-
formance no matter with or without recovery. For
instance, faulty clients can simply trigger the three-
phase checkpoint subprotocol on every request, which
makes hBFT achieve similar performance as PBFT
before the faulty clients are evacuated. The advantage
of hBFT indicates that the three-phase checkpoint
subprotocol is triggered rarely. Therefore, hBFT im-
proves the performance in fault-free and normal cases
but achieves comparable performance as PBFT in the
worst case.

6 EVALUATION

We evaluate the system on Emulab [31] utilizing up
to 45 pc3000 machines connected through a 100Mbps
switched LAN. Each machines is equipped with a
2GHz, 64-bit Xeon processor with 2GB of RAM. 64-
bit Ubuntu 10 is installed on every machine, running
Linux kernel 2.6.32.

We identify several “good” provable secure cryp-
tographic tools for our scheme. In particular, we use
RSA-FDH [4] for our digital signature scheme, and
HMAC-MDS [5, 6] for the MAC algorithm. Both of
them are very simple, fast and provably secure. We
employ such tools due to the fact that we would
like to abandon those vulnerable cryptographic tools
used in papers like PBFT and Zyzzyva. An additional
reason is that we still want to compare our scheme
with them since RSA-FDH and HMAC-MD5 have
almost exactly the same efficiency as a naked RSA
signature and MD5 (using with parameter as the key).

We compare our work with Castro et al.’s imple-
mentation of PBFT [7] as well as Kotla et al.’s imple-
mentation of Zyzzyva [21]. All the experiments are
carried out in normal case, where a backup is faulty.
Four micro-benchmarks are used in the evaluation,
also developed by Castro et-al. An x/y benchmark
means x K B size request from clients and y K B size
reply from the replicas.

6.1

Fig. 5 compares throughput achieved for the 0/0
benchmark between PBFT, Zyzzyva and hBFT where
B is the size of the batch. Fig. 6 presents the per-
formance for the four benchmarks where B = 1
for all benchmarks. All the data are tested in the
configuration of f = 1.

As the number of clients increases, Zyzzyva per-
forms even worse than PBFT. As indicated in Sec-
tion 1.1, without batching (B = 1, f = 1), bottleneck
server of Zyzzyva(4 + 5f + %) performs 1.2 times
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more MAC operations than PBFT (2 + %) and 2.4
times more MAC operations than hBFT (2 + %).
With batching (B = 10, f = 1), Zyzzyva performs 3.3
more MAC operations than PBFT and 4.0 more MAC
operations than hBFT.

The simulation validates the theoretical results. Ac-
cording to Fig. 5, without batching, hBFT achieves
more than 40% higher than that of PBFT and 20%
higher than that of Zyzzyva. With batching, hBFT
achieves a peak throughput that is 2 times better
than Zyzzyva, and still achieves 40% improvement
over PBFT. The difference is due to the cryptographic
overhead of each protocol.

Additionally, "BFT works better than both Zyzzyva
and PBFT under high concurrency. As the number
of clients grows, all three protocols scale better with
batching than without. When the number of clients
exceeds 40, throughput of Zyzzyva degrades obvi-
ously. All other cases remain stable when the number
of clients exceeds 30. When the number of clients is
fewer than 30, hBFT with batching has an outstanding
growth. Other than that, throughput of PBFT with
batching also grows faster compared with all the
left cases. The reply message cannot be batched and
replicas need to reply to every client in the batch,
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which explains the result why Zyzzyva achieves the
lowest throughput in normal cases.

For all benchmarks as shown in Fig. 6, hBFT
achieves higher throughput as well. All three proto-
cols achieve the best throughput for 0/0 benchmark
and the worst for 4/4 benchmark. Zyzzyva performs
worse for 0/4 and 4/4 benchmarks than 4/0 bench-
mark. hBFT has similar result. PBFT achieves almost
the same throughput for 0/4 and 4/0 benchmarks.
This implies that the size of reply messages has more
effect for speculation-based protocols. In addition,
without batching, PBFT performs worse than both
Zyzzyva and hBFT. The outstanding performance of
read-only requests is due to the read-only optimiza-
tion, where replicas send reply directly to the clients
without running agreement protocol.

To summarize this section, hBFT outperforms both
Zyzzyva and PBFT in normal cases. Since PBFT
achieves almost the same throughput for 0/4 and 4/0
benchmarks and it achieves higher throughput with
batching, it works well for systems that have more
computationally consuming tasks. Comparably, #BFT
and Zyzzyva work well for systems that have highly
concurrent but lightweight requests.

6.2 Latency

The performance depends on both cryptographic
overhead and one way message latencies. Crypto-
graphic overhead controls the latency of processing
one message and the number of one way latencies
controls the number of phases that the agreement
protocol goes through. In terms of critical paths be-
tween sending and completing a request, PBFT has
four if replicas send reply to the clients after prepare
phase. hBFT has only three, which is the theoretical
lower bound of agreement protocols. Even though the
checkpoint subprotocol takes three phases in contrast
to two in other protocols, it will not decrease the
overall performance significantly since the checkpoint
subprotocol is triggered rarely. Zyzzyva takes three in
fault-free cases and five in normal cases.
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Additionally, the performance of all protocols is also
related to the frequency of checkpoint subprotocol as
well. It has a direct impact on hBFT due to the reason
that checkpoint subprotocol of hBFT is more expen-
sive than the other two. By default, we assume that
a checkpoint subprotocol starts every 1000 requests
or batches. hBFT outperforms the other two under
this setting. If we make checkpoint subprotocol more
rarely, it can be expected that #BFT will achieve even
better performance and vice versa.

As illustrated in Fig. 7 and Fig. 8, without batching,
hBFT achieves 40% lower latency than that of PBFT
and 30% lower latency than that of Zyzzyva. With
batching, similar with the performance of throughput,
Zyzzyva achieves higher latency than that of PBFT,
and hBFT outperforms both. When the number of
clients increases, all the protocols scale well without
an obvious increase in latency, which shows that all
three protocols work well under high concurrency.
When the number of clients exceeds 40 and with
batching, Zyzzyva has an increase of latency. Since
every (Reply) message in Zyzzyva contains 3f + 1
MACs and cannot be batched, the increase in latency
indicates that the cryptographic operations in the
(Reply) message limits the behavior of a protocol.

The performance for all the four benchmarks shows
similar results as indicated in Fig. 8. All the three
protocols have the lowest latency for 0/0 benchmark
and the highest for 4/4 benchmark. hBFT and PBFT
achieve almost the same latency for both 4/0 and
0/4 benchmarks. Zyzzyva achieves lower latency for
4/0 benchmark than 0/4 benchmark. The length of
reply message also reduces the latency per request for
Zyzzyva. The effect is not as apparent as the effect on
throughput though. Although hBFT performs better
on throughput for the 4/0 benchmark than the 0/4
benchmark, it achieves almost the same latency for
both benchmarks, which indicates that the checkpoint
subprotocol has a more direct effect on the throughput
than the latency.



Overall, the latency validates the results of through-
put. Our statements in Section 5 are verified by the re-
sults of latency. By observing the curves of latency, we
can summarize the performance of protocols under
normal operations. On the other hand, by observing
the curves of throughput, the effects of other subpro-
tocols are included.

6.3 Fault Scalability

We also examine the performance when the num-
ber of replicas increases. As indicated in Fig. 1, the
throughput is related to f. We view the primary as
the bottleneck server not only because of the number
of MAC operations in the agreement, but also because
of other effort such as processing requests. For PBFT
and hBFT, the backups do not perform many fewer
cryptographic operations than the primary. Compara-
bly, backups in Zyzzyva perform many fewer cryp-
tographic operations than the primary, which can
be viewed as an advantage of Zyzzyva. However,
this does not have a direct positive effect on the
throughput and latency since the primary performs
more cryptographic operations. As f increases, the
performance for all three protocols will degrade due
to the cryptographic overhead, especially without
batching.

Fig. 9 compares the number of cryptographic op-
erations that the primary and clients perform as
the number of faults increases. In addition to PBFT,
Zyzzyva and hBFT, we also include Q/U and HQ,
which are two (hybrid) Byzantine quorum protocols.
For the performance of a primary with or without
batching, as illustrated in Fig. 9(a) and Fig. 9(b), it
can be observed that batching greatly reduces the
number of cryptographic operations as the number
of total replicas increases. For instance, although the
number of cryptographic of PBFT is the most out-
standing without batching and increases quite fast,
the cryptographic overhead is almost the smallest
without batching and remains stable as the number
of faults increases. Comparably, the number of cryp-
tographic operations of Zyzzyva does not decrease
too much without batching. Since both HQ and Q/U
are quorum-based protocols, they cannot use batch-
ing and work better under low concurrency. hBFT
achieves the smallest numbers with or without batch-
ing. Combined with Fig. 9(c), we observe that there
is a trade-off between the number of cryptographic
operations of the bottleneck server and the clients.
HQ requires the most cryptographic operations for
the bottleneck server but the fewest for clients among
all the five protocols. Zyzzyva requires a comparably
large number for both the bottleneck server and the
clients. hBFT requires the fewest for the bottleneck
server but still a high number for clients.

As illustrated in Fig. 10, as the number of faulty
replicas increases, which indicates an increase of
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the number of total replicas, the latency of PBFT
increases quickly without batching. With batching,
PBFT achieves a more stable curve. Zyzzyva achieves
higher latency than the other two protocols for each
case. The latency of #BFT on the other hand, stabilizes
and does not show any trend of growing to a large
degree with or without batching. The key factors
in the performance are not only the critical paths
and the number of cryptographic operations, but also
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the message complexity. Although Zyzzyva has more
cryptographic overhead, it requires the same number
of messages as hBFT, which explains why both scale
better than PBFT.

Not surprisingly, as shown in Fig. 11, the through-
put shows a similar trend with latency. As the sys-
tem scales, when f is greater than 2, throughput
of Zyzzyva decreases obviously, especially without
batching. Zyzzyva scales better than PBFT but the per-
formance degrades obviously when f is greater than
4. hBFT scales better than both Zyzzyva and PBFT
with or without batching. The difference between the
numbers of cryptographic operations is still the key to
the overall performance. When the number of faults
is 5 and assuming b equals 10 if used, PBFT requires
42 MACs without batching and only 6 with batching,
Zyzzyva requires 44 MACs without batching and 30.5
with batching, and hBFT requires 17 MACs without
batching and 3.5 with batching. For systems with high
concurrency, PBFT and hBFT are preferred and scale
well as the number of faults increases.

6.4 A BFT Network File System

This section describes our evaluation of a BFI-NFS
service implemented using PBFT [?], Zyzzyva [21],
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and hBFT, respectively. Similarly, in the NFS service,
we evaluate the performance of normal cases where a
backup server fails. The NFS service exports a file sys-
tem, which can then be mounted on a client machine.
The replication library and the NFS daemon is called
to reach agreement on the order when replicas receive
client requests. Once processing is done, replies are
sent to clients. The NFS daemon is implemented using
a fixed-size memory-mapped file.

We use the Bonnie++ benchmark [12] to compare
our three implementations with NFS-std, an unrepli-
cated NFS V3 implementation, using an I/O intensive
workload. The Bonnie++ benchmark includes the fol-
lowing directory operations (DirOps): (1) create files
in numeric order; (2) stat() files in the same order;
(3) delete them in the same order; (4) create files in
an order that will appear random to the file system;
(5) stat() random files; (6) delete the files in random
order.

We evaluate the performance when a failure occurs
at time zero, as detailed in Fig. 12. In addition, up
to 20 clients run bonnie++ benchmark concurrently.
The results show that hBFT completes every type of
operations with lower latency than all of other proto-
cols. The main difference lies on the write operations.
This is due to the fact that all the three protocols use
read-only optimization, where replicas sends reply
messages to the clients directly without running the
agreement protocol. Compared with NFS-std, hBFT
only causes 5% overhead while PBFT and Zyzzyva
cause 10% and 15% overhead, respectively.

[] Write(char) [] Write(block) [ ] Read(char) [l Read(block) [l DirOps

NFSstd [T 1 [ /|
hBFT [T 1 IS 3
Zyzzyva | I I
PBFT :l:]:‘q ‘1

0 20 40 60 80 100 120 140 time(s)

Fig. 12. NFS Evaluation with the Bonnie++ bench-
mark.

7 CONCLUSION

In this paper, we presented hBFT, a hybrid, Byzantine
fault-tolerant, replicated state machine protocol with
optimal resilience. By re-exploiting speculation, the
theoretical lower bound for throughput and latency,
as well as the requirement on clients’ participation
have been achieved for both fault-free and normal cases
in hBFT. hBFT is a fast protocol that moves some jobs
to the clients but can still tolerate faulty clients. We
have also proven the safety and liveness properties of
hBFT and demonstrated how hBFT improves on the
performance of PBFT without several of the trade-offs
of other protocols, some of which also use speculation.
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