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ABSTRACT
As blockchain-based commercial projects and startups flour-

ish, efficiency becomes one of the critical metrics in designing

blockchain systems. Due to its high efficiency, Proof of Authority

(PoA) Aura has become one of the most widely adopted consensus

solutions for blockchains. Our research finds over 4, 000 projects

have used Aura and its variants. In this paper, we provide a rigor-

ous analysis of Aura. We propose three types of time-manipulation
attacks, where a malicious leader simply needs to modify the times-

tamp in its proposed block or delay it to extract extra benefits. These

attacks can easily break the legal leader election, thus directly harm-

ing the fairness of the block proposal. We apply our attacks to a

mature Aura project called OpenEthereum. By repeatedly conduct-

ing our attacks
1
over 15 days, we find that an adversary can gain

on average 200% mining rewards of their fair shares. Furthermore,

such attacks can even indirectly break the finality of blocks and the

safety of the system. Based on the deployment of Aura as of Sep-

tember 2022, the potentially affected market cap is up to 2.13 billion

USD. As a by-product, we further discuss solutions to mitigate such

issues and report our observations to official teams.
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1 INTRODUCTION
Proof of Authority (PoA), first proposed byWood [1, 2], is a main-

stream category of consensus algorithms for blockchain systems.

PoA is inspired by Byzantine fault-tolerant (BFT) protocols [3],

which allows a group of designated authorities to vote for the

proposed blocks. As a result, Aura does not rely on heavy compu-

tational power and enables fast transaction confirmation. Many

algorithms [4] have been proposed under the category of PoA.

Among them, Aura (Authority Round) is the most featured one [5].

Aura and its variants have been widely used in multiple mature

blockchain projects such as VeChain [6], Sokol [7], Kovan [8], and

OpenEthereum (formerly Parity) [9]. However, despite its wide

adoption, Aura has not rigorously been proven to be secure.

Aura assumes a synchronous network [4]. It divides the UNIX

time into equal-length steps (also called slots). In each step, only one
authority (equiv. sealer [10, 11]) is elected as a leader to propose a

new block, while other sealers verify blocks upon receiving the pro-

posed block (see Figure 1.a). However, in practice, the synchronous

assumption is not practical as unexpected network delay is very

common. As a complementary mechanism, Aura allows sealers

to postpone validating the delayed blocks (Figure 1.b). A delayed

block, or equivalently a block with the near future timestamp, is

still regarded as a part of the canonical chain that can be accepted

as time elapses.

Unfortunately, after a careful investigation of the Aura protocol,

we find that the validation deferral mechanism could be exploited

as a loophole. By simply manipulating the block timestamp as a

malicious leader (also called the in-turn sealer [10, 11]), an attacker

can easily make other honest sealers fail to obtain any rewards.

Specifically, a malicious leader may falsify his timestamp or de-

lay his newly generated block to suppress the next sealer’s block.

Through this posterior occupation, the adversary can extract more

mining rewards and transaction fees [12] beyond his fair share,

thereby threatening the fairness of the system.

Following this connotation, we formalize our attack strategies

and propose three time-manipulation attacks [13] that break the

security goals of Aura protocol [11, 14]. We demonstrate that the

Aura algorithm suffers from fairness vulnerabilities: a malicious

in-turn sealer can always deprive the privilege of block generation
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for the next sealer via producing a falsified but legal2 block, which
directly breaks fairness [11, 14, 15] property. By launching such

an attack whenever becoming an in-turn sealer, an adversary can

easily include a larger number of transactions in its proposed blocks

than expected, and gain extra rewards without being noticed by

other sealers.
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Figure 1: Aura operating mechanism

In fact, only ONE malicious sealer is sufficient to successfully

launch the time-manipulation attacks. While one sealer’s attack

cannot directly destroy the entire network (making the system fail

to achieve its security goals), such attacks may cause participating

authorities to drop out due to failure to gain any rewards. In particu-

lar, if the attacker continues the attack over a long period, the victim

authority will fail to gain any rewards as its proposed block will

NEVER be finalized, making it lose the financial incentive to partic-

ipate in the system. This may further lead to a massive dropping of

out-of-network participants and jeopardize consensus stability (e.g.,

similar to stake bleeding [16]). An even worse scenario is that if 𝑓

malicious Byzantine sealers simultaneously launch such attacks,

where 𝑓 is the maximum number of failures the system can tolerate,

the proposed blocks of up to 2𝑓 sealers will never be finalized. Such

an attack indirectly destroys the deterministic finality [17, 18] and

accountable safety [19, 20], i.e., the security goals of the system.

To formalize our attacks and understand the impacts of our

attacks, we provide formal definitions of fairness and conduct a

theoretical analysis of our attacks. We first clarify the notion of

fairness by disconnecting its fuzzy definition into fine-grained sub-

terms that are driven from its transaction-, block- and leadership-
perspectives. Then, we formally prove that our attacks can effec-

tively harm all the defined fairness properties. For the attack of

each malicious sealer, the victim sealer cannot insert its block at

a regular position on-chain, and the block it proposes will never

be confirmed. Our theoretical analysis also details the root cause

of our attacks. Finally, we delineate each strategy by showing its

intrinsic mechanisms and actual damages.

To evaluate the aforementioned damages in practice, we design,

implement and evaluate these attacks by conducting experiments

on top of OpenEthereum, a widely adopted Aura implementation.

We fork the main branch, modify the code and compile them into 3

executable files. With the help of our analysis tool, we run them

2
Here, the term ‘falsified’ means the block is embedded with an incorrect timestamp,

whereas ‘legal’ means that the block is aligned with original code specifications such

that it will still be regarded as valid.

in an isolated environment with 21 nodes for experiments. By re-

peatedly conducting three types of attacks over 15 days, all of our

attacks successfully achieve their goals: the attacker can always

frontrun other sealers’ chances of being the leader. Under the sec-

ond and third strategies, attackers get up to 200% of their fair mining

reward. These results prove the feasibility and effectiveness of our

attacks. We have made the aforementioned tools and experimental

data publicly available (see Appendix C.1). As of September 2022,

over 4, 000 projects
3
are using Aura and the potentially affected

market cap of our attacks is up to 2.13 billion USD
4
.

We summarize our contributions in the following.

• We present a family of time-manipulation attacks (three strate-
gies, Sec.3), where only one attacker is sufficient for extracting

extra rewards than its fair share.

• We introduce fine-grained fairness definitions from different per-

spectives of blockchains. We theoretically prove that our attacks

can successfully break Aura’s fairness (Sec.3.4), deterministic

finality and accountable safety (Appendix B.3).

• By launching attacks (Sec.4) for over 15 days on OpenEthereum,

a widely adopted Aura implementation, our attacks successfully

frontrun the victim leading sealers’ chances (Sec.4.2).

• We explore the root reason and the impacts of the attacks (Sec.5)

and provide our countermeasures to mitigate such issues (Sec.6).

2 POA AURA
System model. Aura assumes a synchronous network, i.e., if a

correct node sends a message at the time 𝑡 , it will be received

by a correct node no later than time 𝑡 + 𝛿 . Aura grants the block
mining right to a committee of authorized nodes (i.e., authorities).

Each authority maintains a local list of elected authorities that are

capable of proposing and validating blocks in a pre-defined order.

In this paper, we use the term sealers [10, 11, 21] and authorities

interchangeably. In Aura, time is divided into consecutive steps
(denoted as s). Each step is based on a fixed length, called step
duration, denoted as d. In each step, one of the sealers is assigned

as the leader (a.k.a. in-turn sealer [11]). The leader has the highest

priority of proposing blocks in the current round. Aura assumes

𝑛 = 2𝑓 + 1 sealers, where 𝑓 is the maximum number of Byzantine

nodes, matching the lower bound for synchronous BFT [17].

The protocol. Aura protocol consists of four phases: block proposal,
block confirmation, fork choice mechanism, and voting mechanism.

We present the core procedures in each phase in Algorithm 1.

Block proposal. Each node is aware of the current step as the steps

are related to physical clocks (line 3, Algorithm 1). At each step, a

leader will be assigned (line 3–5, Algorithm 1, where the elected

leader is indexed with 𝑖𝑑 on the sealer list) for issuing a block.

It is misbehavior to propose more than one block per step or to

propose a block out of turn [4]. New blocks record the timestamps

when they are generated (line 7, Algorithm 1), and the accumulated

difficulties (abbr. diff ) of their ancestors in the path to the genesis

3
Aura is generally used as a pluggable algorithm embedded in mainstream implemen-

tations. At the time of writing, Github projects using these implementations are statis-

tically listed as follows: Nethermind (200+), Openethereum (340+), ParityEthereum

(1700+) and Substrate (2400+). Here, the notation “+” represents forked by.
4
Data is captured on Sep. 15th, 2022 from CoinMarketCap, including the market shares

of VeChain, PoA Network, Gnosis Chain, etc.

2



Algorithm 1 The Aura algorithm

1: procedure Block_Propose(𝑠𝑒𝑎𝑙𝑒𝑟𝑖 )
2: while (true) do
3: 𝑠 ← 𝑛𝑜𝑤/𝑠𝑡𝑒𝑝_𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛
4: 𝑖𝑑 ← 𝑠 mod |𝑠𝑒𝑎𝑙𝑒𝑟𝑠 | ⊲ leader index

5: 𝑏𝑙𝑜𝑐𝑘.𝑠𝑖𝑔← 𝑠𝑒𝑎𝑙𝑒𝑟𝑖
6: if (𝑠𝑒𝑎𝑙𝑒𝑟𝑖 = 𝑠𝑒𝑎𝑙𝑒𝑟𝑖𝑑 ∧ 𝑠𝑒𝑎𝑙𝑒𝑟𝑖 ∈ 𝑠𝑒𝑎𝑙𝑒𝑟𝑠) then
7: 𝑏𝑙𝑜𝑐𝑘.𝑡𝑖𝑚𝑒𝑡𝑎𝑚𝑝 ← TS(lastblock.timestamp)

8: 𝑏𝑙𝑜𝑐𝑘 ← 𝑠𝑖𝑔𝑛(𝑇𝑋𝑠,𝑤𝑒𝑖𝑔ℎ𝑡) ⊲ seal a block

9: 𝑏𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡 (𝑏𝑙𝑜𝑐𝑘)
10: 𝑠𝑙𝑒𝑒𝑝 (𝑠𝑡𝑒𝑝_𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛) ⊲ wait for next step

11: end while
12: end procedure
13: − − − − − − − − − − − − − − − − − − − − − − − − − − − − −
14: procedure Block_Verify(𝑏𝑙𝑜𝑐𝑘_𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑)
15: 𝑏𝑙𝑜𝑐𝑘 ← 𝑏𝑙𝑜𝑐𝑘_𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑

16: 𝑚𝑎𝑥_𝑡𝑖𝑚𝑒 ← 𝑛𝑜𝑤 + 𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑏𝑙𝑒_drift
17: if𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑇𝑖𝑚𝑒 (𝑏𝑙𝑜𝑐𝑘) − 𝑛𝑜𝑤 > 𝑟𝑒𝑐𝑒𝑖𝑣𝑒_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then
18: return (Too Late) ⊲ block discard

19: if𝑏𝑙𝑜𝑐𝑘.𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 > 𝑖𝑛𝑣𝑎𝑙𝑖𝑑_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then
20: return (Invalid) ⊲ malicious block

21: if𝑏𝑙𝑜𝑐𝑘.𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 > 𝑚𝑎𝑥_𝑡𝑖𝑚𝑒

22: return (Temporarily Invalid) ⊲ wait a while

23: 𝑟𝑜𝑢𝑡𝑒 ← Fork_Choice(𝑏𝑙𝑜𝑐𝑘, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑟𝑜𝑢𝑡𝑒)
24: 𝑣𝑖𝑒𝑤, 𝑓 𝑙𝑎𝑔← Vote_For_Finality(𝑏𝑙𝑜𝑐𝑘, 𝑟𝑜𝑢𝑡𝑒)
25: 𝑏𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡 (𝑣𝑖𝑒𝑤, 𝑓 𝑙𝑎𝑔) ⊲ broadcast confirmed local view

26: end procedure
27: − − − − − − − − − − − − − − − − − − − − − − − − − − − − −
28: function Fork_Choice(𝑏𝑙𝑜𝑐𝑘, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑟𝑜𝑢𝑡𝑒)

29: 𝑝𝑎𝑟𝑒𝑛𝑡 ← 𝑏𝑙𝑜𝑐𝑘.𝑙𝑎𝑠𝑡𝑏𝑙𝑜𝑐𝑘

30: 𝑏𝑙𝑜𝑐𝑘.diff← 𝑝𝑎𝑟𝑒𝑛𝑡 .𝑠𝑡𝑒𝑝 − 𝑏𝑙𝑜𝑐𝑘.𝑠𝑡𝑒𝑝 + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡
31: 𝑛𝑒𝑤_𝑟𝑜𝑢𝑡𝑒.diff← 𝑏𝑙𝑜𝑐𝑘.diff + 𝑝𝑎𝑟𝑒𝑛𝑡 .diff
32: return (𝑚𝑎𝑥 (diff(𝑛𝑒𝑤_𝑟𝑜𝑢𝑡𝑒, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑟𝑜𝑢𝑡𝑒)))
33: end function
34: − − − − − − − − − − − − − − − − − − − − − − − − − − − − −
35: function Vote_For_Finality(𝑏𝑙𝑜𝑐𝑘, 𝑟𝑜𝑢𝑡𝑒)

36: 𝑠𝑖𝑔← 𝑆𝑖𝑔𝑛(𝑟𝑜𝑢𝑡𝑒)
37: 𝑣𝑖𝑒𝑤 ← 𝑀𝑒𝑟𝑔𝑒 (𝑠𝑖𝑔, 𝑏𝑙𝑜𝑐𝑘.𝑠𝑖𝑔)
38: 𝑓 𝑙𝑎𝑔← (𝑁𝑢𝑚(𝑏𝑙𝑜𝑐𝑘.𝑠𝑖𝑔) > |𝑠𝑒𝑎𝑙𝑒𝑟𝑠 |

2
)

39: return 𝑣𝑖𝑒𝑤, 𝑓 𝑙𝑎𝑔

40: end function

block 𝑏G . If a correct leader does not have pending transactions, it

is supposed to propose an empty block.

Block confirmation. Non-leader sealers executes block verification

procedure (line 14) once they receive a new block. Several values in

block headers are verified here and the total diff of the new block

is measured. Particularly, the timestamp value of a block should be

checked (line 19–20) to prevent accepting blocks unreasonably far

in the future (line 21–22). A block will be verified only if it is proved

to be valid and is chosen under a fork choice mechanism when forks

occur. A confirmed block will be regarded as a part of the canonical

chain, and the block header with the path ending with it (referred

as to 𝑃 [𝑏0, 𝑏1 . . . 𝑏𝐾 ]) will be broadcast (line 25).

Chain selection. Aura adopts a simplified GHOST [22] protocol to

solve forks. Themechanism is a variant of GHOST [23] and Bitcoin’s

longest-chain [24]. According to technical specifications [25], when

a fork (subtree) exists, the path with the most intensive computing

power will be identified as the heaviest branch and be accordingly

merged into the canonical chain. The concept of total difficulty
evaluates how much computing power has been invested in a block.

Aura adopts a similar mechanism, but each block’s difficulty is

related to the current step number and the difficulty of the chain

of blocks led by the proposed block. Briefly, the current block’s

difficulty is calculated as follows: the total difficulty (diff ) of a block

is calculated recursively by adding its parent’s total difficulty (diff P )
and its header difficulty (diff H ). A block proposed in a lower step

has a higher header difficulty (Equation 4) and thus is likely to be

accepted by the canonical chain.

Voting mechanism. Aura is a hybrid consensus protocol that com-

bines both probabilistic finality and deterministic finality [4]. The

voting mechanism aims to provide deterministic finality instantly.

Each sealer in Aura votes for a proposal on the longest common

prefix, evaluated via a F (·) function. In short, the longest common

prefix denotes a chain of proposed blocks with the highest difficulty.

In each step, the in-turn sealer issues a block extending the longest

common prefix it is aware of, which is not necessarily the chain

led by the block proposed by the previous in-turn sealer. Then, the

in-turn sealer signs this newly proposed block and broadcasts it

to other sealers (i.e., the block proposal phase). According to the

synchrony assumption, honest sealers will eventually receive the

signed block from a correct in-turn sealer within the step duration

and then evaluate whether this is the longest common prefix they

are aware of. If over half of the sealers confirm the prefix, they will

vote for it when they become in-turn sealers, i.e., this proposed

block together with all its ancestors on the prefix will be finalized.

3 TIME-MANIPULATION ATTACKS
In this section, we first provide a set of definitions of fairness,

aiming at defining the term generically from different perspectives

of blockchains. Then, we present three concrete strategies, each

targeting different levels of fairness.

3.1 Fairness in Aura
We define the notion of fairness in each operating layer by con-

sidering transactions, blocks, and committee rotation and combine

them to deliver a complete definition of the protocol fairness.

T -fairness. The transaction-level fairness adopts the definition of

receive-order-fairness [14][15][26]. A transaction 𝑇𝑥𝑖 received at

the time T𝑖 , with sufficiently many witnesses (or confirmations),

should always appear before the transaction 𝑇𝑥 𝑗 at the time T𝑗
in the final chain where T𝑖 < T𝑗 .
B-fairness. The block-level fairness [27] emphasizes the correct

receive-order of blocks. Much similar to T -fairness, a block 𝑏𝑖
with the timestamp T𝑖 , confirmed by sufficiently many validators,

should always be allocated in the front of the block 𝑏 𝑗 with the

timestamp T𝑗 in the final chain where T𝑖 < T𝑗 .
L-fairness. Apart from T / B-fairness, the leadership-order fair-

ness [28] refers to the legal order of committee members: a leader

3



candidate with the index 𝑥 should always, by following the rota-

tion formula 𝑓 (·), have more advantages in becoming the leader

than the candidate with the index 𝑦 where 𝑓 (𝑥) < 𝑓 (𝑦).
Π-fairness. The protocol (Π)-level fairness covers the above three

types of fairness: when achieving all T /B/L-fairness, the proto-
col can be deemed as reaching Π-fairness.

3.2 Time Features
Aura follows a time-based block proposal scheme, where leader

election is related to physical clocks. Based on this fact, we highlight

two key features, drifting tolerance and cooling period. As we show
later on, our attacks are tightly related to these two features.

Drifting tolerance. Sealers start to verify the timestamp when they

receive a new block. In a real system, benign time-drifting could be

common. To improve the practicality, Aura sets a drifting tolerance.

For example, in OpenEthereum [9], a block holding the timestamp

within 15 seconds will be accepted instantly. If the timestamp is

over future 15 seconds but no more than 150 seconds, it will be

marked as temporarily invalid and be stayed in the block queue for

later verification until requirements are met. Otherwise, it will be

considered invalid and discarded immediately.

Cooling period. After a sealer receives a block at T0, it first sends
a vote message to other sealers at T1. Then, it starts to propose a

new block at T2 if it is selected as a leader for this step. We call the

time interval between T1 and T2 as the cooling period Δ. Obviously,
Δ = T2 − T1. It represents the smallest duration between voting and

a new block production (blue slot in Figure 1). The mechanism is

designed to prevent sealer racing when accessing pending blocks.

3.3 The Attacks
The core idea of our attack is based on the malicious time modi-

fication. We outline three different types of attack strategies. Each

strategy maliciously modifies the timestamp of a proposed block

in a different way. Commonly, all strategies are conducted from

the attackers’ side, where the attacker changes the timestamp as-

signment functions from the original source code and runs the

malicious program PM on its local machine. For the rest of this

section, we show that by controlling only one sealer, a malicious

adversary can successfully launch the attacks. Here, we denote the

timestamps of parent blocks by timestampP .

Attack-I: timestamp falsify. To launch a timestamp falsify at-

tack, an adversary only needs to falsify the timestamps of his newly
proposed blocks (see Figure 2.a). In normal cases, the original times-

tamp timestampO of a leader’s block is the system time when the

timestamp is assigned, which should be equal to timestampP + d.
In the attack case, the timestamp of an attacker’s block becomes

timestampP +d+𝜂, where 𝜂 is a valid deferment. Through this way,

the adversary’s block #𝑏0 cannot be the immediately verified after

being received, and it will be marked as “temporarily invalid”. With

such a strategy, the next in-turn sealer’s block #𝑏1 will be discarded

due to relatively less difficulty (calculated by Equation (3)).

Attack-II: sleep delay. To launch this attack, we let an adversary

delay block generation and propagation, making the next sealer’s

cooling period override the block production time so that the in-

coming normal block production will be suppressed. In particular,
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Figure 2: Attack strategies (I/II)

the second strategy requires inserting a single line of sleeping in-
struction during the malicious sealer’s block production process. In

normal cases, a block is generated after the cooling period, and the

cooling period can be covered by the duration slot. However, in our

attack, the adversary sleeps for a while before generating a block,

making the next in-turn sealer delay the block receiving and further

suppressing the block production process of the next in-turn sealer.

To be specific, to ensure our attack can halt the generation of the

next in-turn sealer’s block, we let the cooling period Δ override the

time when the next in-turn sealer should seal a block.

Namely, we require sleep time DA > d − Δ. Additionally, to
avoid missing the attacker’s legal step, DA is also required to be

less than d + 𝜖 , thus

d − Δ ≤ DA < d + 𝜖, (1)

where 𝜖 is a short drifting period to tolerate the network latency.

Attack-III: timestamp falsify & sleep delay. The third strategy is
a hybrid scheme integrating the former two methods. An adversary

first sleeps for a while, and then, assigns a profitable timestampM
to his newly generated block. In this way, timestampM can be

more subtle (hard to detect) than that in the first strategy, since no

“temporarily invalid” is reported. The attack only needs to satisfy

the condition that,{
timestampP < timestampM
timestampM ≤ timestampP + d + DA + 𝜂.

(2)

Notably, the manipulation can be profitable when using special-

ized types of smart contracts [29], which is demonstrated with an

example in Appendix B.1.

In summary, all three attacking strategies create fairness issues
that cover all the leadership, block, and transaction levels. This is

rooted in the fact that a malicious leader can propose out-of-step
(but legal) blocks. Specifically, in Attack-I, an adversary delays the

validation of its proposed block to the next step, competing with the

following innocent block. The block proposed by the next in-turn

sealer will therefore not be confirmed. In Attack-II, an adversary

delays the normal block issuance. While sleeping for a period of

time, as we mentioned, the next sealer will miss the chance to

issue a new block. This deprives the legal block proposing rights

of incoming sealers. Meanwhile, during the delay, the adversary

obtains additional time to include more transactions from the pool,

gaining more transaction fees as extra revenues. Similar to Attack-
II, an adversary in Attack-III can make the next in-turn sealer’s
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proposed block fail to be confirmed. Furthermore, this adversary

can gain extra rewards.

3.4 Theoretical Analysis
In this section, we provide a formal analysis to theoretically

prove the feasibility of our attacks.

Theorem 3.1. Assume that BP is an arbitrary block that has
reached deterministic finality at the time TP , B𝑖 and B𝑗 are two
following consecutive blocks with T𝑖 < T𝑗 , under our Attack-I, B𝑗 is
never allocated after B𝑖 , namely, Aura cannot achieve B-fairness.

Proof. In step s𝑖 , the timestamp of the attacker’s block exceeds

drifting tolerance, making the newly created block B𝑖 marked as

temporarily invalid. Under the round-robin rotation, if a leader L𝑖 is
believed to be failed, the next leaderL 𝑗 simply moves on to the next

step s𝑗 , and generates another blockB𝑗 . Suppose that𝐴𝑢𝑟𝑎 protocol
reaches B-fairness. That means the block B𝑗 is chained after the

block B𝑖 , namely F (B𝑗 ) > F (B𝑖 ). However, this contradicts to
the chain selection mechanism, where the higher total difficulty

should be accepted by the canonical chain. Observe that,

F (B★) = diffP + diffH, (3)

diffH = sP − sH + fixed_parameters (4)

We have known that s𝑖 + 1 = s𝑗 , and both B𝑖 and B𝑗 share the
same parent block BP , making that F (B𝑗 ) < F (B𝑖 ).

□

Theorem 3.2. Assume that adjacent S𝑥 ,S𝑦 and S𝑧 are three
arbitrarily neighbour sealers with the rotation rule 𝑓 (S𝑥 ) < 𝑓 (S𝑦) <
𝑓 (S𝑧), under our Attack-II/III, S𝑦 will never become a valid sealer
after S𝑥 ’s attack, and S𝑥 is always followed by S𝑧 , namely, the Aura
protocol cannot achieve L-fairness.

Proof. Suppose an attacker S𝑥 delays DA after its step begins

at T𝑥 and S𝑦 starts to generate block at T𝑦 . In the normal case,

T𝑦 = T𝑥 + d. Given our attacking strategy DA ≥ d − Δ, and
DA < d + 𝜖 , making S𝑥 start to generate blocks at T𝑥 ′ where
T𝑥 ′ = T𝑥 + DA , so that

T𝑥 + d − Δ ≤ T𝑥 ′ < T𝑥 + d + 𝜖. (5)

Since there is a cooling period Δ before S𝑦 proposes a block, T𝑦
is required to be greater than T𝑥 ′ + Δ. Considering the minimum

value of T𝑥 ′ according to Equation (5),

T𝑦 > T𝑥 ′ + Δ ≥ T𝑥 + d − Δ + Δ = T𝑥 + d. (6)

Assume that Aura reaches L-fairness, the rotation order should

be S𝑥 ,S𝑦 , and S𝑧 . To achieve this goal, T𝑦 should never miss the

moment T𝑥 + d for successful block generation. However, it con-
tradicts to Equation (6). Hence, the theorem is proved.

□

Theorem 3.3. Assume that 𝑇𝑥𝑖 is received before 𝑇𝑥 𝑗 , under our
Attack-I/II/III, Aura can not promise that 𝑇𝑥𝑖 is positioned in front of
𝑇𝑥 𝑗 , namely, the Aura protocol cannot reach T -fairness.

Proof. (Sketch) If T -fairness is achieved, then Aura protocol

must satisfy B-fairness. However, Attack-I cannot reach B-fairness.
Attack-I/II cannot reach L-fairness, causing them to fail to satisfy

B-fairness. Thus, the proof is concluded. □

4 RUNNING ATTACKS AGAINST
OPENETHEREUM

To demonstrate the feasibility of our proposed attacks, we launch

attacks on a widely adopted project, OpenEthereum [9].

4.1 Malicious Programs
Experiment configuration.We build a test network on a server

with Ubuntu 20.04.4 LTS (GNU/Linux 5.4.0-109-generic x86_64)

operating system. All nodes are locally deployed and connected

to different ip/ports, simulating a globally distributed system. Our

simulation environment consists of 21 sealer nodes, which are

indexed from 0 to 20 (e.g., 𝑛𝑜𝑑𝑒0 to 𝑛𝑜𝑑𝑒20). Each node has one

sealer account responsible for block generation. We set the step

duration d as 5 seconds. In this setup, sealers take turns to propose

blocks every 5 seconds regardless if it is an empty block (a block

with no transactions). We also deploy 5 client nodes and let them

continuously send transactions to simulate sync nodes’ activities

in the real world.

Experimental procedure. Under our configuration, the nodes

will propose and propagate blocks according to the round-robin

scheduling of {𝑛𝑜𝑑𝑒0, 𝑛𝑜𝑑𝑒1, 𝑛𝑜𝑑𝑒2, ..., 𝑛𝑜𝑑𝑒20, 𝑛𝑜𝑑𝑒0} repeatedly in

every 5 seconds. We also require the client nodes to constantly

send transactions at a fixed rate of 400 transactions per minute.

In total, we run the system for 45, 725 minutes and obtain 9, 450

blocks (450 rounds). Our Python-based analysis tool establishes an

automatic procedure for both initiating the attack and processing

raw experimental data. We observe the chain state for a relatively

sufficient time and accordingly record the current state as a normal

case. In our experiments, the attacker is set to be a malicious sealer

with the intention of breaking the order of block generation. To

simulate three different attacks, we let 𝑛𝑜𝑑𝑒0 be the adversary node,

executing each of the three attack strategies. To implement these

malicious programs, we fork the original project and falsify their

code in three different ways. Especially, we modify the function

fn new() (Appendix C.1) in block proposing procedure as follows.

Attack-I program. In the original source code, the timestamp

of a new block should be assigned the current system time

timestampO . In our first strategy, we falsify such a timestamp as

timestampO + d + 𝜂, where 𝜂 is the 15-second valid deferment.

Practically, we modify the function fn new() in original source

code (line 4–5, Algorithm 2) and then compile it for the malicious

program 𝑃M1
. To launch the attack, we let 𝑛𝑜𝑑𝑒0 run 𝑃M1

while

all other honest nodes execute the program 𝑃O .
Attack-II program. For the second strategy, we add a piece of code

segment to sleep the program for 3 seconds during block genera-

tion, namely, DA = 3 where DA < 𝛿 . The newly generated block

thereby will not be broadcast until the sleep ends. We compile

the falsified codes (line 6–8, Algorithm 2 in Appendix C.2) and

obtain the malicious 𝑃M2
. We run 𝑛𝑜𝑑𝑒0 as 𝑃M2

while honest

nodes execute the program 𝑃O .
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Attack-III program. This strategy combines the former two fal-

sifications. On the attacker’s side, we sleep the program for 3

seconds during the block generation and assign its timestamp

by serial values in a threshold 𝑡 , where timestampP + 1 < 𝑡 <

timestampP + 23𝑠𝑒𝑐𝑠 , here (23 = d + 𝜂 + DA = 5 + 15 + 3).
We repeatedly conduct experiments with different timestamp

modifications (e.g., timestampP + 1secs, timestampP + 20secs,
timestampP + 23secs) and denote all programs compiled from

these codes (line 9–11, Algorithm 2) as 𝑃M3
. We assume that the

attacker 𝑛𝑜𝑑𝑒0 executes 𝑃M3
while honest nodes run 𝑃O .

4.2 Results
We observe the tracing logs of each node and the header informa-

tion of confirmed blocks. In the normal case, block proposers follow

the rotation order from𝑛𝑜𝑑𝑒0 to𝑛𝑜𝑑𝑒20. That means, after receiving

𝑛𝑜𝑑𝑒1’s block, 𝑛𝑜𝑑𝑒2 should take this block as its parent block and

then proposes a new block based on this ancestor. All the authori-

ties have an equal probability of generating blocks. In contrast, in

attacking cases, a malicious block proposer can successfully deprive

the block generation right of the subsequent in-turn candidate. In

particular, in all three attacks, block proposers rotate in the order

of {𝑛𝑜𝑑𝑒20, 𝑛𝑜𝑑𝑒0, 𝑛𝑜𝑑𝑒1,..., 𝑛𝑜𝑑𝑒20} repeatedly. For consistency, we
still assume the block generated by malicious 𝑛𝑜𝑑𝑒0 as #𝑏0, and the

blocks generated by honest 𝑛𝑜𝑑𝑒1 as #𝑏1. The result indicates that

#𝑏0 are always followed by a normal #𝑏2 created by 𝑛𝑜𝑑𝑒2, and #𝑏1
of 𝑛𝑜𝑑𝑒1 is continuously vacant (see Figure 3.b), breaking the fair or-

der of 𝑛𝑜𝑑𝑒1 in normal cases. Figure 4 gives a wider range of block

loss depending on multiple tamper combinations. Experimental

results are as follows and Appendix C.3.

Attack-I results. In block generation stage, the attacker 𝑛𝑜𝑑𝑒0
successfully generates #𝑏0. Then the victim 𝑛𝑜𝑑𝑒1 also success-

fully creates #𝑏1. Both blocks are verified eventually, even if #𝑏0
is recorded as temporarily invalid. However, at the confirmation

stage, only #𝑏0 can be accepted, and #𝑏1 will be ultimately discarded,

which proves the effectiveness of our attack. This situation directly

forfeits the victim 𝑛𝑜𝑑𝑒1’s profits. Normally, as we continuously

create transactions at a stable rate, the overall confirmed transac-

tions included in each block are stable (see the black dotted line

in Figure 3.a). However, since #𝑏1 has been discarded, transactions

in it are no longer alive. In this case, we observe that #𝑏0 did not

obtain extra profits, but #𝑏2 gains more profits than unusual since

more transactions are included in its block (the green dotted line

of Method 1 in Figure 3.a).

Attack-II results. For Attack-II, no errors are found by tracing the

logs of block generation. All blocks can be instantly confirmed once

they are received by sealers. However, 𝑛𝑜𝑑𝑒1 cannot propose blocks

even within his turn, which means #𝑏1 has never been created. We

notice that 𝑛𝑜𝑑𝑒1’s log with the statement of “reseal too early” is

followed by the termination of 𝑛𝑜𝑑𝑒1’s block generation, meaning

that the cooling period has overridden 𝑛𝑜𝑑𝑒1’s time slot of block

creation. In this way, 𝑛𝑜𝑑𝑒0 can extract extra revenues by collecting

more transactions within his block, where no penalty is applied.

The number of transactions amount will rise as the sleeping period

extends (cf. the second sub-graph in Figure 3.a).

Attack-III results. For Attack-III, we falsify 𝑛𝑜𝑑𝑒0’s timestamp

when it proposes #𝑏0. Meanwhile, we also make the program sleep

for 3 seconds. However, when compared with Attack-I, no error

has been reported in the tracing log while #𝑏1 was not proposed,

either. The block generation process is also aborted by logging

“reseal too early”. We conduct a series of experiments and present

transactions per block of both #𝑏0 and #𝑏1 in the third folding line

chart in Figure 3, which is similar to the results of Attack-II. #𝑏0
can collect more transactions than other blocks due to its longer

transaction processing time.

5 ANALYSIS AND IMPACT
We develop this section by providing an in-depth discussion of

the root reasons that make our attacks practical. Then, we analyze

the potential impacts of the proposed attacks.

5.1 Root Cause
Attack-I, analyzed.The first method is conducted bymaking use of

timestamp drift tolerance and the forking mechanism. In particular,

the tolerance allows honest sealers to accept a pending block as long
as it is within 15 seconds from the verificationmoment, regardless of

whether the timestamp is tempered or benign. Secondly, the forking

mechanism provides an advantage of acceptance for the block with

a smaller step s (cf. Equation (3)). Block verification is completed

within a rather short period after it is received, particularly in

the same second as acceptance in our observed cases. Therefore,

the proposed block #𝑏0 is supposed to be verified at timestampO .
However, as we set timestampM to timestampO + d + 15secs (or
more but less than timestampO +d∗2+15secs), #𝑏0 will be marked

as temporary invalid immediately when being received by other

sealers and will stay in the waiting queue for later processing until

it can meet at least the upper bound of valid timestamp threshold

(15 seconds ahead of the verification moment).

Since we offset the timestampM by d + 15secs from the actual

timestamp, the successful verification of timestampM is delayed

to the next step. As d elapsed, #𝑏0 can be re-activated and verified.

However, the next sealer’s turn begins at the same time. The new

sealer will not consider #𝑏0 as its parent since it is not confirmed

yet. He will create a new block #𝑏1 to fill the gap. As a result, #𝑏0
and #𝑏1 both exist in the network with the same parent, and a fork

occurs (see the red square in Figure 2.a). At this point, the sealers

need to evaluate these two new valid blocks and choose one to

merge into the canonical chain. In normal cases, blocks arrive/leave

the pending pool after validation. In the attacks, #𝑏0 gets stuck in

the queue until #𝑏1 arrives and gets verified, creating a fork.

Equation (4) defines the header difficulty diff O of a block. The

decisive components are sP and sH . According to Aura’s polling
rule, #𝑏0 is one step ahead from #𝑏1, whichmeans that (H is header):

sH#𝑏1
= sH#𝑏0

+ 1. (7)

And therefore,{
diffH#𝑏0

= sP − sH#𝑏0
+ fixed_parameters

diffH#𝑏1
= sP − (sH#𝑏0

+ 1) + fixed_parameters
(8)

so that,

diffH#𝑏1
= diffH#𝑏0

− 1. (9)

Since they share the same parent,

diffP#𝑏1 = diffP#𝑏0 , (10)
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(a) The number of transactions per block of each node in one polling round under the

proposed attacks.

(b) The number of blocks proposed by each node under the attacks where the

system generates 9, 500 blocks in total.

Figure 3: Attacking results on transaction and block levels across participant nodes

based on Equation (3), the total difficulty of the two blocks

diff
#𝑏1

= diff
#𝑏0
− 1. (11)

With higher total difficulty diff, the attacker’s block wins the forking
competition against the next generated bock and thus deprives the

next sealer of the right to propose a block within this turn. The

attacker successfully frontruns the next legal candidate.

Attack-II, analysed. The key point of the second method is to

make use of the cooling period between consecutive block pro-

posals (implemented by reseal_min_period). Figure 2.b depicts this
attacking strategy in the red square box. The white zone represents

the attacker’s sleeping period, while the light-blue zone is the short

period between reseal operations. As introduced in Sec.2, a min-

imum period between transaction-inspired reseals is required as

the cooling period (cf. Sec.3.2) in case of enormous empty blocks.

The seal and reseal operations are triggered each time when

the sealer proposes a new block or verifies a received block. In

the practice of OpenEthereum, this period is represented by re-
seal_min_period and set to 2 seconds by default. When an adver-

sary seals a block, next_allowed_reseal will be reset by adding re-
seal_min_period to the current time. Then the next reseal will not

happen until next_allowed_reseal.
The mechanisms leading to #𝑏1’s failure can be divided into two

general cases. In the first case, if the sleeping period is longer than

or equal to d−Δ (see Equation (1)) but less than d (sleep ends within
the Δ range in Figure 2.b), the next sealer could miss its proposing

chance because the reseal_min_period has not elapsed. The delayed

verification of #𝑏0 will occupy the valid slot of #𝑏1’s. In this case,

#𝑏0 will be successfully confirmed by non-victim sealers, whereas

the incoming sealer cannot propose any block. In the second case,

if the sleeping period is longer than or equal to d but less than

d + 𝜖 (the 𝜖 range), the incoming sealer’s inner step s will calibrate
to s + 1 before the sleeping ends. Therefore, the next sealer will

start to propose #𝑏1 and thereby create a fork when #𝑏0 and #𝑏1 are

queued at nearly the same time. According to the chain selection

rule (Sec.2), #𝑏0 will be accepted whereas #𝑏1 is abandoned.

Figure 4: Block loss under different combinations of sleep delay &
timestamp falsify, where the coordinates indicate the proportion of
the delay time & falsified timestamp to the step duration.

Attack-III, analysed. The third method combines the previous two

attacks. The mechanism behind this method is similar to Attack-II.
#𝑏1 might confront the failure of either being proposed or dis-

carded due to the forking mechanism. This depends on the length

of the sleeping period. The only difference from Attack-II is the
timestamp that can be manipulated. The manipulation range de-

pends on the length of the sleeping period. The timestamp ear-

lier than timestampP + 1sec is considered to be invalid. As dis-

cussed in Sec.3, the timestamp within 15 seconds of validation is

acceptable. Since the sleeping period delays #𝑏0’s propagation and

validation for DA , the upper limit of valid timestamps becomes

timestampO + 15secs + DA . Moreover, if the timestamp is earlier

than the honest time within the valid range or delayed less than

15secs+DA , other nodes will not detect this misbehavior and report

the error (e.g., the block cannot be marked as temporarily invalid).
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5.2 Discussion
Difficulty of launching our attacks. The proposed attacks can

be conducted by one single node. As for permissioned networks,

the greedy authority is more likely to become malicious for seeking

more economic benefits. Therefore, the only barrier to conducting

the attack is to become a sealer, in which the code falsification

process can be considered costless. Beyond that, we found such

attacks are hard to be detected. A rational and dynamic adversary
may not seek to directly destroy the consensus stability (safety or

liveness). Instead, he aims to pursue optimal profits for the long-

term running. Obviously, if a malicious sealer always behaves in

an abnormal way, he will be easily caught or kicked off. To avoid

such troubles, he can premeditatedly deviate from the protocol

specification for a short period of time while honestly following

the specification most of the time. This rational strategy is practical

in real scenarios for avoiding punishment, since distinguishing

between intentional or unintentional block delay is challenging.

Attacks on other Aura projects. Although we present the analy-

ses by using OpenEthereum as an instance, our attacks represent a

universal problem that potentially lies in all Aura-based projects

with the drifting tolerance mechanism. To the best of our knowl-

edge, such affected projects include OpenEthereum, Substrate [30]

and their variants. We summarize that a common reason for the

unfairness issue lies in its strong synchronous network assumption:
as the leader election in Aura relies on the calculation of machine

times within a synchronous network, it is necessary to leave a

drifting tolerance for messages to be delivered to every participant.

Without such tolerance, it is unfeasible for participants to share

the exact same time record in real networks. The practicality will

thereby be significantly reduced.

5.3 Impacts of Time-manipulation Attacks
Economic impact.We give an extensive analysis of existing proto-

cols and find that Aura has been applied to many mature industries

such as energy transition [31], cross-border payment [32], and sup-

ply chain [33, 34]. Beyond that, in the cryptocurrency space, Data

disclosed by CoinMarketCap [35] shows that more than 2.13 billion

USD market share (cf. Table 1) is involved. Conceivably, by con-

ducting our attack, an adversary may gain a considerable amount

of economic benefits, which will ultimately be paid for by other

sealers and users. This economic loss and the absence of unfairness

restraint will damage the current blockchain economy and under-

mine the long-term trust and value of relative cryptocurrencies.

Impact on upper-layer applications. It is well known that a

miner (sealer in our case) can manipulate the block timestamp to

obtain advantages when attacking the targeted smart contracts [13].

For example, if a miner plays a timestamp-based betting game, he

naturally has the advantage of selecting a suitable timestamp on the

block he is mining. A good rule of thumb is that a contract never rely

on an interval of fewer than 15 seconds. However, our Attack-II has
proved that such experience and lesson are not reliable: by subtly

designing the sleep period, we can manipulate timestamp drift up

to (15 +DA ) seconds or (15 + 2 ∗ d) so the proposed block can still

be confirmed, expanding the unsafe time-frame. We accordingly

provide an active smart contract that can be potentially affected by

our attack in Appendix B.1.

Impact on consensus stability. As described in Sec.2, Aura is a

hybrid consensus protocol that combines both probabilistic chain

selection and deterministic finality [20]. Intuitively, our attacks

only have impacts on the probabilistic sector, as the victim sealer’s

block cannot include in the chain, and such block loss will not clash

with the best chains’ voting. However, we found the block is the

carrier for the voting message. The lost block may further make

consensus lose the properties of deterministic finality [17, 18] and

accountable safety [19, 20]. Details are provided in Appendix B.3.

6 COUNTERMEASURES
A natural approach to defend our attack is to adjust the time

tolerance in the Aura protocol. In particular, for the loophole in

Attack-I, we can simply let validators reject blocks with timestamps

deferred more than 𝜂 (the valid deferment). As for Attack-II and
Attack-III, we can decrease 𝑟𝑒𝑐𝑒𝑖𝑣𝑒_threshold (line 17, Algorithm 1),

which narrows down the time tolerance for the delayed block sent

by the malicious leader. With this patch, the victim sealer is always

expected to generate a new block even if he did not receive the

block from the last step. An alternative solution is to introduce an

audit mechanism with punishment. By observing the block density

within a time period, an auditor can learn which sealer becomes ma-

licious. Then, he can report the abnormal behaviours and kick out

the malicious sealer from the committee. Note that the timestamp

loophole is an unavoidable problem in Aura because of its intrinsic

time-based block-producing scheme. Under the assumption that the

network is fully synchronous, and all participants have to follow the

same clock time, Aura is forced to make trade-offs between safety

and utility. If the range of drifting tolerance is strictly restricted, ma-

licious behaviours might be successful in a lower probability, while

correspondingly, benign behaviours (e.g., slight clock asynchrony)

will also be restricted, which may reduce system practicality. This

demonstrates the significance of our attacks and points out the

drawback lying in Aura.

7 CONCLUSION
In this paper, we design, implement and apply a series of time-

manipulation attacks against PoA Aura implementations, where

a malicious sealer can break the leadership fairness in the block

proposal stage. Our constructed strategies increase the attacker’s

probability of mining blocks beyond its fair share, causing an eco-

nomic loss for the next honest sealer and threatening the consensus

stability of the entire system. Experimental results demonstrate the

effectiveness of our attacks. After that, we further dig into the root

causes of such vulnerabilities and accordingly provide the counter-

measures. To the best of our knowledge, this work is the first to

explore the time-manipulation attack against the PoA Aura.
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APPENDIX
A POA AURA PROJECTS

We estimate potential monetary loss of PoA projects. We list the

projects using Aura and their market values in Table 1, including

both cryptocurrency projects and academic projects.

B ANALYSIS OF IMPACTS
Following the discussions in Sec.5, we provide more details show-

ing the impacts of the attacks.

B.1 Smart Contracts
We present an instance that is based on Ethereum smart con-

tracts, where the timestamp plays an essential role in contract

functionalities. In the following lottery contract, timestamps are set

to be a critical condition for gaining rewards. Players pay 1 ether

for admission qualifications, and the contract randomly selects the

winner by checking if the timestamp of the block is divisible by

16 (line 14). Following the Ethereum design, malicious players can

easily manipulate their timestamps within 15 seconds to meet the

winning condition without the risk of rejection. Therefore, by mod-

ifying the modulus to 16, an adversary’s misbehaviour cannot be
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Table 1: Selected projects and their market cap

Sector Project Market Cap Notes

C
ry

pt
oc

ur
re
nc

y
pr

oj
ec
ts

Parity - https://parity.io

OpenEthereum - https://openethereum.org

VeChainThor $1,716,313,385

POA Network $5,257,900

Gnosis Chain
★

$393,061,738 pre-merged version

Kovan - Ethereum testnet

Sokol - Ethereum testnet

Nethermind - https://nethermind.io

Arianee Mainnet $ 6,960,361 https://www.arianee.org/

Rio Chain $1,999,820 https://www.riochain.io/

Shiden $9,676,668 https://shiden.astar.network

Ingotsex -

Bloxberg - https://bloxberg.org

Substrate - https://substrate.io

Chronicled - https://chronicled.com

A
ca
de

m
ic

pr
oj
ec
ts

Permit Exchange - [34]

Energy Transition - [31]

Cross-Border Payment - [32]

World Bank Blockchain - [36]

Supply Chain - [33, 34]

1
Data accessed in September 2022, from CoinMarketCap.

successful with 100% probability. However, our attack expands the

unsafe time frame of current construction, increasing the success

probability. Such a contract becomes insecure since a malicious

miner has the ability to manipulate block timestamps up to 20

seconds (by conducting Attack-III ).

Listing 1: A smart contract for lottery
1 Contract Roulette {

2 uint public pastBlockTime;

3 / / i n i t i a l l y c o n t r a c t
4 constructor () {}

5 / / r e c e i v e f u n c t i o n
6 receive () external payable {}

7 / / f a l l b a c k f u n c t i o n u s ed t o make a b e t
8 fallback () external payable {

9 / / must s end 1 e t h e r t o p l ay
10 require(msg.value == 1 ether);

11 / / on l y 1 t r a n s a c t i o n p e r b l o c k
12 require(block.timestamp != pastBlockTime );

13 pastBlockTime = block.timestamp;

14 if(block.timestamp % 16 == 0) { / / w inne r
15 payable(msg.sender ). transfer(address(this). balance );

16 }

17 }

18 }

B.2 Impacts on System Performance
We discuss the performance trends affected by our attacks. In-

stead of damaging the entire network, only one of the sealers’ inter-

ests will be affected (the incoming leader) by the malicious leader

in the current turn. Figure 5 shows the comparison of transaction

confirmation rates between normal cases, and multiple attacking

cases under the assumption that no sealer quits the network during

continuous attacks. As the number of transactions increases, the

confirmed transactions grow steadily. The impact on the total con-

firmed transactions rate is negative, but not prominent. However, in

the real world, the victim sealer may quit mining when being aware

of the unfair distribution of mining rewards. Thus, the full-loaded

confirmation rate may decrease as the network scale shrinks.

Figure 5: System transaction confirmation rates under different at-
tack strategies, when transaction input rate grows.

B.3 Impact on System Stability
Deterministic finality [17, 18] means that a transaction becomes

impossible to revert and is considered to be final once it is added

to the public ledger. Deterministic finality in Aura aims to provide

provable finality for the newest longest common prefix [37].

Theorem B.1. Suppose that 𝑓 Byzantine sealers launch Attack-
II/III simultaneously. The protocol cannot reach deterministic finality.

Proof. We show that for any valid blockB𝑖 with the correspond-
ing longest common prefix, it never reaches a deterministic finality.

Suppose B𝑖 comes to a deterministic finality. In that case, it requires

over a half sealer’s confirmation on B𝑖 or on the block treated B𝑖 as
an ancestor. Such confirmation messages are achieved by collecting

signatures on the blocks attached to B𝑖 . In extreme circumstances,

𝑓 Byzantine sealers simultaneously launch our attacks on the chain,

and each of them prevents the block proposed by the next candidate

from being attached to B𝑖 . This will, in the worst case, result in a

total of 2𝑓 sealers of creating invalid signatures, which means B𝑖
can only collect 1 confirmation messages, less than

2𝑓 +1
2

. Thus, the

protocol cannot reach a deterministic finality. □

Accountable safety, proposed in Casper [19], focuses on fault

detection and accountability for consensus algorithmswhen there is

a violation of safety property. In Aura, it aims to find the sealers who

violate the consensus rules in case of two conflicting votes [20, 38].

Corollary B.2. Suppose that 𝑓 Byzantine sealers launch Attack-
II/III simultaneously. The protocol cannot reach accountable safety.

Proof. From Theorem B.1, we have known that arbitrarily lat-

est block B𝑖 cannot achieve consensus among sealers. Thus, the

committee members who depend on the block consensus cannot be

determined, and thereby Byzantine sealers will not be detected. □
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C RESOURCES
This section presents source code, developed tools, experimental

results and mechanism comparisons.

C.1 Codes and Tools
We have made our source code publicly available, including Rust

source code and Python auxiliary tools. Both raw and processed

experimental data can be found in the following repository links.

- Attacking Point I https://github.com/openethereum/openet

hereum/blob/main/crates/ethcore/src/engines/mod.rs#L504

- Attacking Point II https://github.com/openethereum/openet

hereum/blob/main/crates/ethcore/src/block.rs#L196

- Codes on Attack-I https://github.com/TEEs-projects/Time-m

anipulation-Attack/tree/main/openethereum-3.3.4_25s

- Codes on Attack-II https://github.com/TEEs-projects/Time

-manipulation-Attack/blob/main/openethereum-3.3.4_sleep3s

- Codes on Attack-III https://github.com/TEEs-projects/Time

-manipulation-Attack/blob/main/openethereum-3.3.4_23s_sleep

3s

- Analysis Tool (Python) https://github.com/TEEs-projects/Ti

me-manipulation-Attack/tree/main/testchain/shellgen

- Experimental results https://github.com/TEEs-projects/Time

-manipulation-Attack/tree/main/results

C.2 Pseudocodes of the Attacks
We provide the detailed code segments of each attack in Algo-

rithm 2. Our attacks target on the block proposal stage without any
modification on block verification. We mainly attack the timestamp
(TS) function by instantiating three strategies: falsify timestamps

(line 4-5), delay blocks (line 6-8), and combine them (line 9-11). No-

tably, for Attack-III, we choose 23 seconds as an instance that falls

in the range of [timestampP + 1sec, timestampO + 15secs + DA ]
(Equation 2).

Algorithm 2 Attacks on Aura (OpenEthereum)

1: function TS(𝑙𝑎𝑠𝑡𝑏𝑙𝑜𝑐𝑘.𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝)

2: if Normal then ⊲ Normal case
3: return (𝑠𝑦𝑠𝑡𝑒𝑚.𝑡𝑖𝑚𝑒)
4: else if Attack-I then ⊲ Attack-I
5: return (𝑙𝑎𝑠𝑡𝑏𝑙𝑜𝑐𝑘.𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 + 25)
6: else if Attack-II then
7: 𝑠𝑙𝑒𝑒𝑝 (3𝑠) ⊲ Attack-II
8: return (𝑚𝑎𝑥 (𝑛𝑜𝑤, 𝑙𝑎𝑠𝑡𝑏𝑙𝑜𝑐𝑘.𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 + 1))
9: else if Attack-III then ⊲ Attack-III
10: 𝑠𝑙𝑒𝑒𝑝 (3𝑠)
11: return (𝑙𝑎𝑠𝑡𝑏𝑙𝑜𝑐𝑘.𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 + 23)
12: end function

C.3 The Screenshots of Experiments
Figure 6 shows a series of block information that is generated by

separately running the normal Aura clients and malicious clients.

From left to right, the first column shows the block timestamps,

while the second column shows the sealers’ indexes. The following

columns show block numbers (decimal and hexadecimal) and the

(a) Case 1: Normal (b) Case 2: Attack-I

(c) Case 3: Attack-II (d) Case 4: Attack-III

Figure 6: Screenshots on running Aura clients

block hashes. In the normal case, a sealer should rotate in a numer-

ical order. As shown in Figure 6.a, the 𝑠𝑒𝑎𝑙𝑒𝑟0 ’s block is followed

by the 𝑠𝑒𝑎𝑙𝑒𝑟1’s block. In our three attacks, 𝑠𝑒𝑎𝑙𝑒𝑟1’s blocks are all

lost, indicating the effectiveness.

C.4 Symbol Definitions
Table 2 lists the symbols used in our paper.

Table 2: Symbol definitions

. Definition Definition

Pa
ra
m
et
er

diff difficulty / target

ti
m
es
ta
m
p
P

ti
m
es
ta
m
p
O

ti
m
es
ta
m
p M parent timestamp

Tagd step duration the original timestamp

s the step of a block the falsified timestamp

𝛿 network upper-bound delay F (·) used to evaluate common prefix Function

𝑛 number of sealers in committee 𝑓 (·) rotation function to find a leader

𝑓 number of sealers in committee TS(·) function to set time duration

DA sleeping period of adversaries S𝑖 𝑖-th sealer in the committee

Entity

Δ the cooling period, Δ = T2 − T1 L𝑖 𝑖-th leader in the committee

T0 block received time #𝑏𝑖 blocks produced by the sealer

T1 voting start time 𝑏G the genesis block

T2 new block generation time L− leader set

𝜂 a valid deferment B− block set

𝜖 short drifting period T− transaction set

D RELATED ATTACKS
A series of PoA attacks threaten the security promises of PoA

protocols. Vincent et al. [10] proposed the cloning attack by creat-

ing a fork and maintaining two branches to break PoA protocols’

safety. Subsequently, Hu et al. [39] provided a heartbeat-based de-

fense scheme to mitigate this attack. For fairness of PoA Clique,

Wang et al. [11] proposed two types of frontrunning attacks that

break both the transaction-level and block-level fairness in Clique

implementations. They introduced a notion of “edge-turn” sealer

to describe the block proposer with lower priority per turn, and
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modified the block delay configurations when legal edge-turn seal-

ers are creating blocks. Meanwhile, Zhang et al. [21] attacked the

PoA Clique implementation and caused the block disorder by tar-

geting in-turn sealers. Besides, several common attacks, such as

51% attack, also break the liveness and safety property. We provide

a detailed comparison with our attack in Table 3. In addition, a

line of researcher work has drawn attention to delivering security

analyses from the views of the CAP theory [4], functional meth-

ods [40] and programming logic [41]. However, none of the above

work presents an attack either against fairness of Aura or achieved
by time manipulation.

Table 3: Comparison on security properties

Attack Th
re
sh
ol
d

R
at
io
na

lit
y

Sa
fe
ty

Li
ve
ne
ss

Fa
ir
ne
ss

L
-l
ev
el

B
-l
ev
el

T
-l
ev
el

Ta
rg
et

PoA attack Type-I [11] > 𝑛
2

! ! ! % ! ! % edge-turn

PoA attack Type-II [11] > 𝑛
2

! ! ! % % % % edge-turn

Clique attack [21] > 𝑛
2

! ! ! % % % % in-turn

Clone attack [10] > 𝑛
2

- % % N/A N/A N/A % in-turn

51% attack [42] 51% - % % N/A N/A N/A % in-turn

This work > 𝑛
2

! % ! % % % % in-turn

1 Rational: Seeking for maximal profits within the scope of code principles [43].

2 !Holding such a property (attack resistance), while%represents the opposite.

3
An edge-turn sealer proposes blocks when the in-turn sealer shuts down [11].

Comparisons to competitive attacks. We highlight the compar-

isons between our attacks and existing PoA attacks as in Table 3. We

analyze their critical assumptions and their respective outcomes in

terms of consensus properties. Similar to other PoA attacks, the ma-

jority of validators are assumed to be honest. Our attacks have the

same assumption with [11, 21], where the attacker is rational and

greedy to obtain more rewards than his fair share [43]. In contrast,

our attacks directly break the fairness property and indirectly break

the safety property, which is more harmful than other attacks.
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